S05

Exploring the frontiers of astrophysics with machine learning: New methods and current challenges

Communauté

Contact : nina.kessler@u-bordeaux.fr

Machine learning (ML) has become an integral part of astrophysical research, transforming how data is processed, analyzed and interpreted. The techniques developed by the community are constantly evolving, offering new opportunities and challenges for many topics including cosmological simulations, the study of high-energy phenomena, star characterization, asteroid detection, automatic recognition of land types on planets, or the prediction of critical parameters for Space Weather.

This session aims to bring together members of the astrophysical ML community, as well as those who are curious about the topic, to exchange on the developed methods and their applications for scientific research. We propose a workshop divided into two parts, the first one will focus on presentations covering ML applications in simulations and data analysis. The second part (~1 hour) will be a round-table to address the challenges that are specific to ML approaches, such as model interpretability, data bias, and the integration of ML with traditional methods. This is an occasion to discuss the strengths, limitations, and potential of current methods in solving astrophysical questions, while also identifying the community’s needs.

SOC : Nina Kessler (LAB), Aurelie Marchaudon (IRAP), Paolo Bianchini (ObAS), Sylvain Breton (INAF), Emeric Bron (OBSPM), David Cornu (OBSPM), Pierre Gratier (LAB), Hugo Vivien (LAM)

HoraireContributionTitre
14hPrésentations en anglais (12' + 3' par personne)
14h00Vinh Phat Tran (APC) YOLO-CL : Deep Machine Learning for Galaxy Cluster Detection with LSST
14h15 Tristan Boin (OBSPM) Stellar age determination using deep neural networks
14h30Angèle Syty (IAP) ML approaches for exoplanet atmosphere characterization and detrending methods in the Ariel space mission
14h45Théo Bodrito (INRIA) Deep learning for exoplanet detection and characterization by direct imaging at high contrast
15h00Hugo Chambon (IPAG) Unsupervised classification of spaxels in astronomy
15h15Mehdi Noor (IAS) Generative Diffusion Models for Cosmic Web Environment Emulation
15h30Gonzague Radureau (OCA) Using Artificial Intelligence to speed up Radiative Hydrodynamics simulations
15h45Alexis Blaise (CEA) Leveraging the efficiency of Physics-Informed Neural Networks (PINNs) to monitor the evolution of solar active regions
16h00Marian Douspis (IAS)Emulators in CMB analyses
16h15Pause (30')
16h45Flash Talk Posters en anglais (3' par personne)
16h45Merwan Ould-Elhkim (IRAP) Recovering low-amplitude planetary signals from near-infrared RV data using Wapiti, a PCA-based telluric correction method
16h48Amélie Canin (IRAP) Haute Couture : un algorithme de reconstruction optimale pour les cubes JWST-MIRI
16h51Landry Marquis (IRAP) Fusion of JWST images
16h54Hui Yang (IRAP) Classifying X-ray Sources with Supervised Machine Learning
16h57Teng Hu (LAM) Detecting Halos in the Lyman-α Forest using Neural Networks
17h00Kalpa Henadhira Arachchige (CEA) Machine Learning Approach to Coronal Hole Detection within Solar Cycles and Solar Wind Model Validation
17h03Jihane Moultaka (IRAP)Refining the bimodal distribution of galaxies with ML and GAMA survey
17h10Table Ronde en français (20' + 20' par personne)
17h10Simon Dupourqué (IRAP) Accelerating Bayesian inference in astrophysics through interpretable representations with normalizing flows
17h50Nicolas Aunai (LPP Polytechnique) Interaction magnétosphère-vent solaire : une vision globale apportée par l'apprentissage automatique
18h30Fin de l'atelier

Présentations

Authors Title Type File
Nicolas Aunai, Bayane Michotte de Welle, Ambre Ghisalberti, Benoit Lavraud, Vincent Génot, Gautier Nguyen, Alexis Jeandet Interaction magnétosphère-vent solaire : une vision globale apportée par l\'apprentissage automatique invite sf2a_abstract_aunai.pdf
Amélie Canin, Cédric Févotte, Olivier Berné et Nicolas Dobigeon Haute Couture : un algorithme de reconstruction optimale pour les cubes JWST-MIRI poster Abstract_canin.pdf
G. Radureau, C. Michaut Using Artificial Intelligence to speed up Radiative Hydrodynamics simulations orale Radureau_Michaut_2025.pdf
Simon Dupourqué Accelerating Bayesian inference in astrophysics through interpretable representations with normalizing flows invite sdupourque.pdf
A. Syty (Institut d’Astrophysique de Paris, Sorbonne Université, CNRS), O. Faucoz (CNES), JP. Beaulieu (IAP), P. Drossart (IAP), J. Amiaux (CEA), T. Pichon (CEA), C. Cossou (CEA) ML approaches for exoplanet atmosphere characterization and detrending methods in the Ariel space mission. orale AbstractSF2A.pdf
Hui Yang1, Yichao Lin2, Oleg Kargaltsev2, Steven Chen2, Jeremy Hare3 1 Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France 2 Department of Physics, The George Washington University, Washington, DC, USA 3 NASA Goddard Space Flight Center,Greenbelt, MD, USA Classifying X-ray Sources with Supervised Machine Learning poster MUWCLASS abstract for SF2A 2025 conference.pdf
Mehdi Noor, Tony Bonnaire, Aurélien Decelle, Nabila Aghanim Generative Diffusion Models for Cosmic Web Environment Emulation orale SF2A_Abstract_4.pdf
Tristan Boin, Laia Casamiquela, Misha Haywood Stellar age determination using deep neural networks orale SF2A_AI.pdf
Kalpa Harindra Perera, HENADHIRA ARACHCHIGE Barbara, PERRI Sacha, BRUN Antoine, STRUGAREK Eric, BUCHLIN Victor, REVILLE Marie, AUSSERESSE Machine Learning Approach to Coronal Hole Detection within Solar Cycles and Solar Wind Model Validation poster Abstract_6.pdf
Théo Bodrito, Olivier Flasseur, Julien Mairal, Jean Ponce, Maud Langlois, Anne-Marie Lagrange Deep learning for exoplanet detection and characterization by direct imaging at high contrast orale abstract_sf2a_2025_2.pdf
Landry Marquis, Olivier Berné, Thomas Oberlin, Nicolas Dobigeon Fusion of JWST images poster Abstract_SF2A_2025 (1).pdf
Ould-Elhkim Merwan; Moutou Claire; Donati Jean-François Recovering low-amplitude planetary signals from near-infrared RV data using Wapiti, a PCA-based telluric correction method poster Ould_ElhkimS05.pdf
Tran Vinh Phat YOLO-CL : Deep Machine Learning for Galaxy Cluster Detection with LSST orale Abstract YOLO-CL.pdf
H.J Chambon, D. Fraix-Burnet Unsupervised classification of spaxels in astronomy orale SF2A_Abstract_MLIFS.pdf
Teng Hu, Matthew Pieri, Duarte Muñoz Santos,,Simon Weng Detecting Halos in the Lyman-α Forest using Neural Networks poster Abstract_Hu_SF2A25.pdf
Alexis Blaise, Antoine Strugarek, Adam J. Finley, Eric Buchlin, Miho Janvier Leveraging the efficiency of Physics-Informed Neural Networks (PINNs) to monitor the evolution of solar active regions orale Abstract_SF2A_1.pdf
Douspis, Gorce, Salvati, McBride Emulators in CMB analyses orale Abstract_Douspis.pdf
Jihane Moultaka & Cécilia Beissière-Thygesen Refining the bimodal distribution of galaxies with ML and GAMA survey poster Abstract_SF2A_2025_2.pdf