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I. CONTEXT

The Multi Unit Spectroscopic Explorer (MUSE) [1] is an
Integral Field spectrograph.

Fig:Sketch of a MUSE datacube

Challenges:

• (automatically) Detect all galaxies

• (automatically) Measure their redshift

II. DATA

∼ 9200 Galaxy spectra from 5 MUSE surveys with a
measured redshift, transformed to the rest frame.
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Fig:MUSE galaxy spectra stacked in increasing
redshift from bottom to top

Split into 80% (learn)/ 20% (test) configuration

III.1 METHOD: NON-NEGATIVE

MATRIX FACTORIZATION (NMF) [3]
[4] [2]

Learn a low-rank representation of a large set of spectra

X ≃ WH
with: X ∈ Rn×l,W ∈ Rn×k

+ , H ∈ Rk×l
+

Rank k is a free parameter, we fine-tune it using a K-
fold cross-validation.

III.2 APPLICATION: REDSHIFT

PREDICTION

We test all redshifts from 0 to 7 with a step of 0.001.
For each test redshift ztest we:

• De-reshift the spectrum assuming ztest.

• Reconstruct de-redshifted spectrum using basis
vectors (non-negative least squares)

• Quantify reconstruction error with a χ2 metric.

We characterize each redshift with a significance
score ∆χ2 (deviation from the χ2 curve baseline)

IV. RESULTS

1. We achieve a 94% fraction of good predictions on
the test set (with k = 10 ). Bad predictions come
mainly from blended sources and artifacts

2.∆χ2 correlates with redshift confidence scores.

V. CONCLUSION & PERSPECTIVES

Our NMF-based approach outperforms classical
methods( based on Principal Component Analysis
and template matching)

Applying NMF on the full cube provides a ∆χ2 and
a redshift map simultaneously, offering a new ap-
proach for detection.
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