

Supervised Machine-Learning (ML) of X-ray sources

Fig. 1 Chandra and HST images of a globular cluster GLIMPSE-C01 field showing the same sky area. The solid white (left) and green (right) circles represent the 36" half-light radius. Left: 180 ks Chandra image (0.5–7 keV). The white crosses indicate variable X-ray sources. Right: False-color HST image composed of F127M (blue), F139M (green), and F153M (red) WFC3/IR images.

• The X-ray universe is more dynamic and represents a different source population (e.g., isolated neutron stars, X-ray binaries), compared to the optical/IR universe.

• ML has been employed to classify X-ray sources detected by various observatories, including ROSAT (e.g., McGlynn+2004), Swift-XRT, XMM-Newton (e.g., Tranin+2022, Lin+in preparation), eROSITA (Salvato+2022), and our work (Yang+2022,2024) on Chandra Source Catalog version 2.0 (CSCv2).

Challenge 1: Biases between TD and unclassified sources

tion Distribution of TD in Galactic Coordinate

Fig. 6 The (SFD) E(B-V) dust map of TD sources in Galactic coordinates with AGNs shown in circles and non-AGN sources shown in crosses. A deeper color shows a higher value of E(B-V) (extinction). • Most AGNs are situated off the Galactic plane,

experiencing significantly less extinction than Galactic sources.

• An unclassified AGN within the Galactic plane looks much different than TD AGNs located off the plane.

• To address this bias, a direction-specific reddening (extinction and absorption) is applied to TD AGNs.

Challenge 2: Imbalanced TD

Fig. 7 "physically" oversampled TD for the same plot of Fig. 2.

• The TD is imbalanced (see the # of sources for each classification in a 2-D feature space, showcasing class in Fig. 2).

• We produce synthetic sources by sampling reddening parameters from those of TD and applying • The impact of feature uncertainties is often it on the less-populated (excluding AGN) class.

• This oversampling is more realistic/"physical" than other algorithms (e.g., SMOTE), and produce a fainter account for feature uncertainties by iteratively and

population of sources.

Classifying X-ray Sources with Supervised Machine Learning Hui Yang¹*, Yichao Lin², Oleg Kargaltsev², Steven Chen², Jeremy Hare³ ¹ IRAP, Toulouse, France ² Department of Physics, The George Washington University, Washington, DC, USA ³ NASA Goddard Space Flight Center, Greenbelt, MD, USA *hui.yang@irap.omp.eu/

s X-rav Binaries/HMXB (3

d-back and black widow systems

Training Dataset (TD)

Fig. 2 2-D slices of feature space for CSCv2 (above) and 4XMM (below) TDs

Explore the TDs yourselves using the visualization GUI with QR

Challenge 3: Counting for Measurement Uncertainties 3-Class classification (k = 15, weights = 'uniform')

Fig. 8 An illustrative example of a 3-class how feature uncertainty (red and blue squares) of Chandra, XMM-Newton and eROSITA. the source (black square) affects the classification. • A probabilistic cross-matching method underestimated (or ignored) in most ML works. We employ Monte-Carlo (MC) sampling to randomly sampling feature values from their probability distribution functions.

Fig. 9 The same sky region in VISTA VVV (left, a deeper survey) vs. 2MASS (right) overlapped with typical positional uncertainties (PUs) from becomes essential when matching counterparts with deeper surveys (e.g., Pan-STARRs, DECaps, Vista VVV) of an X-ray source with larger PUs.

The MUItiWavelength ML CLASSification Pipeline (MUWCLASS) on CSCv2 and 4XMM (Yang+2022, Lin+in preparation) MUWCLASS performance on CSCv2 TD

of MUWCLASS pipeline

Exploring unidentified GeV sources with MUWCLASS (Yang+2024)

Fig. 10 The combined radio (RACS-low, in green) and TeV (HESS, In blue) image of 4FGL J1844-0306 while the white ellipse represents the 95% GeV error ellipse, along with the CSCv2 sources classified as NSs in magenta and YSOs in green.

See more examples from QR code \rightarrow

Fig. 11 The classification breakdown of CSCv2 sources within 73 GeV sources with green histograms marking the classifications.

• Yang, H., et al. 2022, ApJ, 941, 104. • Yang, H., et al. 2021, RNAAS, 5, 102 • Yang, H., et al. 2024, ApJ, 971, 180 AR0-21007X and AR9-20005.

Fig. 4 The feature importance • Feature importance = how often a particular feature is being used in the classification process.

Fig. 5 Normalized confusion (performance) matrix • A more diagonal matrix \rightarrow better performance

• Not all classes are classified equally well.

Summary

- We developed an automated, have multiwavelength machine learning pipeline, MUWCLASS, which has been applied to X-ray catalogs such as CSCv2 and 4XMM.
- We discuss common pitfalls often encountered in supervised ML, along with developments to potentially recent addressing these issues and improving MUWCLASS.
- MUWCLASS has also been used to identify particle accelerator candidates among unidentified GeV sources.
- Planned include improvements incorporating a 3-D extinction map, adding additional features (e.g., radio flux, distance), utilizing more sensitive surveys, and expanding TDs to Swift/XRT, and eROSITA catalogs.