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Fig. 1 Chandra and HST images of a globular cluster GLIMPSE-CO1 field showing the same sky area. The

G (mag)

solid white (left) and green (right) circles represent the 36" half-light radius. Left: 180 ks Chandra image
(0.5—7 keV). The white crosses indicate variable X-ray sources. Right: False-color HST image composed |
of F127M (blue), F139M (green), and F153M (red) WFC3/IR images. .
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e The X-ray universe is more dynamic and represents a different source population (e.g., isolated
neutron stars, X-ray binaries), compared to the optical/IR universe.

e ML has been employed to classify X-ray sources detected by various observatories, including ROSAT
(e.g., McGlynn+2004), Swift-XRT, XMM-Newton (e.g., Tranin+2022, Lin+in preparation), eROSITA
(Salvato+2022), and our work (Yang+2022,2024) on Chandra Source Catalog version 2.0 (CSCv2).
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Challenge 1: Biases between  Challenge 2: Imbalanced TD
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Challenge 3: Counting for

Class Name (# in CSCv2/4XMM TDs)
» Active Galactic Nuclei/AGN (1596/4488)
* Young Stellar Objects/YSO (352/306)
» High-Mass Stars/HM-STAR (107/146)
Low-Mass Stars/LM-STAR (826/4388)
» Cataclysmic Variables/CV (44/244)
* High-Mass X-ray Binaries/HMXB (32/102)
« Pulsars and Isolated Neutron Stars/NS
(110/139)
Low-Mass X-ray Binaries/LMXB (52/95)
» Neutron Star binaries/NS_BIN (0/40)
* LMXB in CSCv2 TD include NS_BIN, such
as wide-orbit binaries with MSPs and

red-back and black widow systems

Fig. 2 2-D slices of feature space for CSCv2 (above) and

Explore the TDs yourselves using the visualization GUI with QR
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Fig. 6 The (SFD) E(B-V) dust map of TD sources in ==
Galactic coordinates with AGNs shown in circles 1.0 y : : - -

Fig. 7 “physically” oversampled TD for the same plot

and non-AGN sources shown in crosses. A deeper ,
of Fig. 2.

color shows a higher value of E(B-V) (extinction).

e Most AGNs are situated off the Galactic plane,
experiencing significantly less extinction than
Galactic sources.

e An unclassified AGN within the Galactic plane
looks much different than TD AGNs located off the
plane.

e To address this bias, a direction-specific
reddening (extinction and absorption) is applied
TD AGNs.

Fig. 8 Anillustrative example of a 3-class

class in Fig. 2).
e We produce synthetic sources by sampling

it on the less-populated (excluding AGN) class.
e This oversampling is more realistic/”physical” than

0 population of sources.
probability distribution functions.

X-matching to multiwavelength catalogs, See Challenge 4

Unclassified sources

l Training Data |
\ See Challenge 3

MC Yes ~Feature
sampling ? > Uncertainty? ﬁ

Sample features

from their PDFs
No | I

Preprocessing (clean) the data [

+

Apply extinction/absorption on

AGNS If TD* See Challenge 1
Oversample TD with SMOTE }

see Challenge 2

Replace missing data with -100 '

4

;Train the Random Forest classifier |

/

Apply classifier on unclassified sources to obtain
probabilities belonging to any of 8 classes

Fig. 3 The workflow chart
of MUWCLASS pipeline
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Fig. 4 The feature importance
e Feature importance = how often a partic
is being used in the classification process.
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Fig. 9 The same sky region in VISTA VVV (left, a

Challenge 4: Cross-matching

Confusion

deeper survey) vs. 2MASS (right) overlapped

* The TD is imbalanced (see the # of sources for each classification in a 2-D feature space, showcasing  ith typical positional uncertainties (PUs) from
how feature uncertainty (red and blue squares) of Chandra, XMM-Newton and eROSITA.

the source (black square) affects the classification. , o orobabilistic cross-matching method
reddening parameters from those of TD and applying e The impact of feature uncertainties is often
underestimated (or ignored) in most ML works.

e We employ Monte-Carlo (MC) sampling to
other algorithms (e.g., SMOTE), and produce a fainter account for feature uncertainties by iteratively and
randomly sampling feature values from their

becomes essential when matching counterparts
with deeper surveys (e.g., Pan-STARRs, DECaps,
Vista VVV) of an X-ray source with larger PUs.

Exploring unidentified GeV sources with

Fig. 10 The combined radio (RACS-low, in

. green) and TeV (HESS, In blue) image of

4FGL J1844-0306 while the white ellipse
represents the 95% GeV error ellipse,
along with the CSCv2 sources classified as

NSs in magenta and YSOs in green. E E

See more examples from QR code — -

Number of sources per class

MUWCLASS (Yang+2024)
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Fig. 11 The classification
breakdown of CSCv2
sources within 73 GeV
sources with green
histograms marking the
more confident
classifications.

The MUItiWavelength ML CLASSification Pipeline (MUWCLASS) on CSCv2 and 4XMM (Yang+2022, Lin+in preparation)
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Fig. 5 Normalized confusion (performance) matrix
A more diagonal matrix — better performance
Not all classes are classified equally well.

e We have developed an automated,
multiwavelength machine learning pipeline,
MUWCLASS, which has been applied to
X-ray catalogs such as CSCv2 and 4XMM.

e We discuss common pitfalls often
encountered in supervised ML, along with
recent developments to potentially
addressing these issues and improving

MUWCLASS.

e MUWCLASS has also been used to identify
particle accelerator candidates among
unidentified GeV sources.

e Planned improvements include
incorporating a 3-D extinction map, adding
additional features (e.g., radio flux,
distance), utilizing more sensitive surveys,
and expanding TDs to Swift/XRT, and
eROSITA catalogs.
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