

Shanghai Astronomical Observatory Chinese Academy of Sciences

ClUsteR strong Lens modelIng for the Next-Generation observations (CURLING) The Bias from Point-like Multiple Image Approximation

Yushan Xie

Collaborators: Huanyuan Shan, Nan Li, Ran Li, Eric Jullo, Ana Acebron, Chen Su, Xiaoyue Cao, Jean-Paul Kneib, Mengfan He, Ji Yao, Chunxiang Wang, Jiadong Li, Yin Li

I. Basics

II. The bias from point-like multiple image approximationIII. Solution: A pixelated methodIV. Next steps

I. Basics: cluster strong lensing

 ~ 1 SL cluster-lens per ~ 10 sq. deg: potentially ~ 2000 to study, only ~ 200 identified today, nearly ~20 with a good mass model (taken from Jean-Paul's talk, 2011)

Cosmography

Kelly+18 High-z Universe

I. Basics: cluster strong lensing

Parametric

$$\phi_{\rm tot} = \sum_i \phi_{c_i} + \sum_j \phi_{p_j}$$

Nonparametric

Strong lens modeling: algorithms

Package	Model		
gravlens / lensmodel	Para		
Lenstool	Para/Non-Para		
LensPerfect	Non-Para		
glafic	Para		
PixeLens	Non-Para		
SimpLens	Non-Para		
Lensview	Non-para		
GRALE	Non-Para		
GravLensHD	Para		
G-Lens	Para		
Gravitational Lensing	Para		
lens	Para/Non-para		
MOWGLI	-		
	Lefor+		

II. The bias from point-like multiple image approximation

Kneib+1996

The bias

$$\chi_i^2 = \sum_{j=1}^{n_i} \frac{[\theta_{\text{obs}}^j - \theta^j(\mathbf{p})]^2}{\sigma_{ij}^2}$$

Parametric lens modeling

- Constraints (position, redshift, shape, flux)
- Model parameterization
 - Large scale clumps: dark matter halo, gas
 - Small scale substructures: galaxy subhaloes
- Omega Model optimization
- Too complex!
- Systematics from observational side:
- scaling relation,
- line-of-sight halos,
- model assumption,
- astrometric errors

CSST

II. The bias from point-like multiple image approximation

Test on simulated strong lensing clusters: extracted from Hubble Frontier Fields

Component	$\Delta \alpha$	$\Delta \delta$ ["]	e	θ [deg]	r _{core} [kpc]	r _{cut} [kpc]	σ [km/s]	
MACS0416-like z = 0.35								
$N_{\rm r} = 26 \ \pi_{\rm r} \ m_{\rm r} = \{1.6, 3.5, 6.1\}$								
	[1.0, 5.5, 0.1]							
Cluster Halo 1	-0.22	0.06	0.81	143.14	37.39	987.95	615.06	
Cluster Halo 2	22.67	-34.27	0.89	136.49	26.26	987.95	466.55	
Cluster Halo 3	-32.45	8.80	0.00	0.00	34.23	987.95	308.96	
Cluster Halo 4	22.80	-48.15	0.76	122.43	66.73	987.95	707.09	
Perturber 1	31.96	-65.55	0.00	0.00	4.94	274.19	76.82	
Perturber 2	13.34	2.62	0.60	-45.59	4.94	65.12	106.11	
scaling relations	N(gal) = 212	$m^{rer} = 17.02$	$r_{core}^{ref} = 0.15$	$r_{cut}^{ref} = 15.00$	$\sigma^{\rm ref} = 210.00$			
A2744-like, $z = 0.4$								
$N_s = 22, z_{s,toy} = \{1.5, 2.4, 3.8\}$								
Cluster Halo 1	-1.42	0.55	0.59	91.39	28.65	1500.0	515.54	
Cluster Halo 2	-17.85	-15.22	0.40	53.89	34.12	1600.0	632.73	
Ext. Clump 1	99.49	85.97	0.00	0.00	1.3	800.0	111.28	
Ext. Clump 2	138.28	99.87	0.00	0.00	1.4	800.0	372.13	
Ext. Clump 3	24.23	155.84	0.00	0.00	1.4	800.0	294.63	
BCG-N	0.0	0.0	0.28	133.03	1.3	800.0	208.77	
BCG-S	-17.95	-20.05	0.74	26.29	0.17	178.47	308.02	
scaling relations	N(gal) = 223	$m^{ref} = 17.34$	$r_{core}^{ref} = 0.15$	$r_{cut}^{ref} = 19.52$	$\sigma^{\rm ref} = 252.66$			
MACS1206-like, $z = 0.45$								
$N_s = 25, z_{s,toy} = \{1.9, 4.2, 5.7\}$								
Cluster Halo 1	-1.40	0.14	0.72	19.76	35.22	1151.89	748.96	
Cluster Halo 2	9.20	3.63	0.46	116.69	77.60	1151.89	662.94	
Ext. Clump 1	-28.87	-6.83	0.33	-25.16	70.94	1151.89	501.28	
scaling relations	N(gal) = 258	$m^{ref} = 17.19$	$r_{core}^{ref} = 0.15$	$r_{cut}^{ref} = 15.0$	$\sigma^{\rm ref} = 210.0$			
AS1063-like, $z = 0.5$								
$N_s = 23, z_{s,toy} = \{2.4, 3.3, 4.3\}$								
Cluster Halo 1	1.44	-0.73	0.63	-38.91	111.26	1220.84	1165.26	
Cluster Halo 2	-48.60	26.26	0.01	0.00	30.52	1220.84	213.01	
Ext. Clump 1	18.90	-73.36	0.80	-162.05	8.55	1155.16	355.93	
BCG	-18.05	13.47	0.13	-27.80	221.73	2070.29	442.57	
Perturber	0.20	-1.24	0.34	-15.49	88.11	610.42	249.68	
scaling relations	N(gal) = 222	$m^{ref} = 16.18$	$r_{\rm core}^{\rm ref} = 0.15$	$r_{cut}^{ref} = 15.0$	$\sigma^{\rm ref} = 210.0$			

II. The bias from point-like multiple image approximation

$$\chi_{\rm SL}^2 = \sum_{j=1}^{n_i} \frac{[x_{obs}^j - x^j]^2}{\sigma_{ij}^2}$$

based on the extended surface brightness

$$\chi_{\rm SL}^2 = \sum_{i=1}^{n_{\rm pix}} \frac{[s_{obs}^i - s^i]^2}{\sigma_i^2}$$

Posterior

Cosmological parameters

IV. Next step

"TOY": analytical cluster mass + free parameters of only the main halo & cosmology + 3 image families as constraints ≃ 1 day

Modeling: deflection angle map $\alpha \rightarrow$ de-lensing \rightarrow re-lensing \rightarrow sampling JAX NumPyro

free the following 3 strong lensing parameters, and fix the other lensing parameters, as well as all the source parameters:

ELLIP: PHIE: VELDISP:

lib.	emcee	numpyro (0.12.1)	pymc
Device			
cpu ,4 cores (Jasm.)	>1h	14 min 01 s	1 min 51 s
Tesla T4 (google colab.)	1	10 min 08 s	
A100 (Jasm.)	1	1 min 03 s	

Apply on real SL clusters from the next-generation surveys

THANK YOU FOR LISTENING!

