Journées de la SF2A 2024

Title: MHD winds to explain quiescent accretion of compact binary discs

Abstract:

Dwarf Novæ and low-mass X-ray binaries are eruptive binary systems comprised of a Roche-lobe overflowing solar-type star and an accreting compact object. Their recurrence time can be explained by a low-accreting phase called quiescence, during which the angular momentum transport parameter is inferred to be $\alpha \approx 0.01$ by the Disc Instability Model. Non-magnetics mechanisms, such as spiral wave transport, only achieve angular momentum transport an order of magnitude too low, at best, because these discs are so thin (H/R ≈ 0.001) during quiescence. During this phase, the Magneto-rotational Instability is known to be suppressed by the increased resistivity of the plasma which is very little ionised.

Thanks to the new GPU-accelerated code Idefix, I am able to produce global 3D MHD simulations of very thin disc (H/R \approx 0.01) for the first time. I explore the possibility that an MHD wind arises and increases the angular momentum transport in low magnetic Reynolds number (Rm \approx 100) and realistic plasma parameter ($\beta \approx$ 1000) regimes. I quantify the efficiency of the arising MHD wind and measure its global effect on the accretion disc. Namely, I investigate the physical mechanism producing a global tilting of the disc in magnetic simulations.