MILKY WAY GLOBULAR CLUSTERS IN A COSMOLOGICAL CONTEXT

PRIMILARY RESULTS IN COLLABORATION WITH P. DI MATTEO

Pierre Boldrini, CNES fellow at LIRA, Observatoire de Paris

SF2A 2025

l'Observatoire | PSL

Credits: ESA/Hubble & NASA, M. Häberle (MPIA

Simulations: Illustris TNG-50, FIRE, EAGLE, AURIGA, ...

 Methods:
 •
 Formation efficiency parameter based on gas and stellar quantities resolved in the simulation pfeffer +17, Reina-Campos +22, Grudic +23, Rodriguez +23

• Identification of the most DM bound particles *Creasey+18*

Ramos +20, Park +22,DM halo propertiesRodriguez +23, Doppel +23,
Chen+23, Chen +24

• Defining GC candidates as all star particles older than 10 Gyr *Halbesma +20*

Doppel + 23

Statistics: 2-8000 galaxies

Computationally inexpensive with large statistics and several environments

GAIA-CONSTRAINED GC FORMATION AND EVOLUTION MODEL

Our approach

Simulation Code Resolution #MW-like MW Galaxy Data Large statistic : 200 galaxies, 40:0000 globular clusters ja=3 al among 5 physic

					model	
Illustris TNG-50	AREPO	~ 85	198	cosmological	TNG	Р
(Pillepich et al., 2018)				box		
VINTERGATAN (VTG)	RAMSES	~ 7	1	isolated	VTG	\mathbf{C}
(Agertz et al., 2021)						
HESTIA	AREPO	~ 200	13	local group	AURIGA	\mathbf{C}
(Libeskind et al., 2020)						
ELVIS on FIRE	GIZMO	~ 4	3	local group	FIRE	\mathbf{C}
(Garrison-Kimmel	et al., 2019)					
Table 1: Simulations of MW-like galaxies (Public (P), Collaboration (C))						

Credits : Illustrious TNG-50

200 MW systems, 40 000 GCs, from redshift z=3 to z=0, 5 physical properties 3

Ingredients of our approach

MW and its merging satellites

TNG50 MW formation and history

- ◆ 75 snapshots from TNG-50 (75 different MW potentials)
- •All main progenitor of the MW between z=2 and z=0
- All the merging satellites of the MW between z=2 and z=0

 $(M* > 10^7 M_{\odot})$

MW Potential (M_{dm}, r_{dm}, M*, r_{h*}) at z=2 MW Potential (M_{dm}, r_{dm}, M*, r_{h*}) at z=0

Galactic potential = Bulge + DM halo (no disc and no gas component)

6

GC dynamics

- \bullet 200 GCs over 10 Gyr
- 10⁶ M $_{\circ}$ with r_{hm} = 10 pc
- Time resolution: 500 steps per Gyr (2
 Myr)
- 0.5 CPU hrs for 200 GCs over 10 Gyr
 in a MW+environment potential
 (4 min on my laptop with 8 CPUs)

fast and flexible GC model

What are the dynamical perturbers of the in-situ GC population?

Dynamical perturbers:

- Evolved MW potential
- Dynamical friction
- Mass loss
- Satellite galaxies

Observed from Gaia DR3 Random initial conditions

The most important perturber is the **evolved MW potential**

Fixed versus evolved MW potential

Fixed MW potential **Evolved** MW potential

9

Mass loss efficiency?

DF ~ MW potential, GC mass

Evolved MW potential + constant DF on GCs Evolved MW potential + DF on GCs + GC mass loss

DF ~ GC mass/MW mass << 1

What are the dynamical perturbers of the in-situ GC population?

Dynamical perturbers:

- Evolved MW potential
- Dynamical friction
- Mass loss
- Satellite galaxies

Observed from Gaia DR3 Random initial conditions Evolved MW potential + satellite potentials + DF on GCs + GC mass loss

The most important perturber is the **evolved full MW potential**

- Incorporating dark satellites
- Incorporating disk components
- Adding tagging methods
- Simulating the GC dynamics for 198 MW galaxies
- Constraining with Gaia data
- Non spherical potential?

Credits : Illustrious TNG-50

Comments and suggestions are welcome

GAIA-CONSTRAINED GC FORMATION AND EVOLUTION MODEL

Previous models for MW

Our approach

Simulations: unique Several simulations Number of MW galaxies: 2 - 50 200 GC tagged at different redshift **Tagging time:** GC tagged at z=2 and then follow their dynamics **Tagging method:** unique Several methods **Dynamical friction:** no or analytically yes Mass loss: no or analytically yes **Observational constraints:** No or mass, metallicity, Gaia and Apogee distribution **References:** *Halbesma* +20, *Doppel* +23, *Chen* +24 Boldrini & Di Matteo, 2025, in prep

Crain+23

- Spatial resolution ~ sub-pc
- Mass resolution ~ 1 M $_{\odot}$
- **Cosmological context:** large range of space (pc - Mpc) and time-scales (Myr - Gyr)

Resolution requirements make this presently impossible to do in direct calculations that track the formation of individual stars

IDEALIZED GALAXY SIMULATIONS

HIGH-RESOLUTION COSMOLOGICAL SIMULATIONS Rodriguez +23

COSMOLOGICAL SIMULATIONS + POST-PROCESSING MODELS

Reviews: Beasley +20, Renaud +19

IDEALIZED GALAXY SIMULATIONS

HIGH-RESOLUTION COSMOLOGICAL SIMULATIONS

Computationally inexpensive with large statistics and several environments

Reviews: Beasley +20, Renaud +19

10kpc

18