Comet C/1908 R1 (Morehouse) as an analog of comet C/2016 R2 PanSTARRS

S. E. Anderson,^{1,2} P. Rousselot,² E. Jehin,³ B. Noyelles,² J. Manfroid,³ P. Hardy,^{4,2} and V. Robert.^{5,6}

¹Aix-Marseille Université, CNRS, CNES, Institut Origines, LAM, Marseille, France. sarah.anderson@lam.fr ² Institut UTINAM, UMR 6213, CNRS / Univ. Franche-Comté, OSU THETA, BP 1615,

AW, UWR 0215, UNR5 / UNIV. Francie-Comice, USU THET

25010 Besançon Cedex, France

³STAR Institute, Université de Liège, Allée du 6 Août 19c, 4000 Liège, Belgium

⁴Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne, 9 Av. A. Savary, BP47870, F-21078 Dijon Cedex, France

⁵ Institut Polytechnique des Sciences Avancées IPSA, 63 bis Boulevard de Brandebourg, 94200 Ivry-sur-Seine, France

⁶ IMCCE, Observatoire de Paris, PSL Research University, CNRS UMR 8028, Sorbonne Universités, UPMC, Univ.

Lille 1, 77 avenue Denfert- Rochereau, 75014 Paris, France

March 27, 2024

Although comets are typically regarded as nitrogen-depleted relative to protosolar levels, the long-period comet C/2016 R2 (PanSTARRS) exhibited significant N_2^+ concentrations in its coma and tail, in contrast to its low CN presence and scarcity of H₂O. In this study, we revisit the long-period comet C/1908 R1 (Morehouse), distinguished by its intense emission bands of N_2^+ and CO^+ , to probe potential parallels with C/2016 R2. We leverage the New Astrometric Reduction of Old Observations (NAROO) project's advanced sub-micrometric scanner to re-evaluate the historical spectroscopic plates of this comet. Our analysis extends to evaluating its dynamic trajectory and dissecting tail morphology records. Our findings indicate that C/1908 R1 underwent no significant close encounters during its passage through the inner solar system, suggesting that it is dynamically new and directly originates from the Oort Cloud. We ascertain a preliminary N_2^+/CO^+ ratio of 0.08, along with a dust-poor composition, particularities it shares with C/2016 R2. CN was present, but this may be a result of its closer perihelion (0.9 au compared to C/2016 R2's 2.8 au). Moreover, by synthesizing observations of the tail's structure over the three-month period of visibility, we uncover a link between tail dislocation phenomena and aurora borealis sightings on Earth. This association underscores the comet's tail's heightened sensitivity to solar wind fluctuations due to its volatile makeup. C/1908 R1 (Morehouse) emerges as one of the most unaltered relics of our Solar System's formation, and positions itself as an analog to C/2016 R2. This underscores the imperative to preserve and re-examine historical astronomical datasets, not only for historical significance but as a critical resource for contemporary scientific advancement.

Figure 1: First attempt for modeling the observational spectrum (in blue) for the night 31 October. It is based on the sum of CO⁺ emission bands ((4,0) around 3790 Å, (5,1) near 3900 Å and (3,0) near 4010 Å) plus CN (0,0) band (near 3880 Å) plus N₂⁺ (0,0) and (1,1) bands near 3900 Å. The overall fit appears in red and is based on a N₂⁺/CO⁺ ratio for the species along the line of sight of about 8%. This spectrum is an average of the area around the nucleus.