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Decaying turbulence, starting at equipartion

Initial conditions of our fiducial 
simulations:

ABC

OT

In the diffuse phase :

(has magnetic helicity)

(has cross helicity)

Arnold Beltrami Childress

Orszag-Tang

Numerical method – Simulations 

 Isothermal compressible MHD simulations (1024^3 cells) using a modified version 
of the RAMSES code (CHEMSES by Lesaffre et al, 2020):

Mass conservation :

Momentum conservation  :

Induction :
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We recover the local numerical dissipation 
that is not taken into account by the physical 
determination of dissipation.

Estimated real irreversible dissipation rate  (Physical
+numérical): 

OhmicViscous
Physical 

Physical

Calculated irreversible dissipation rate (Physical): 

Dissipation

Numerical

Numerical

Numerical method - Dissipation in simulations 

The overall budget of the generalized mechanical 
energy dissipated:

Dissipation
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Numerical methods - Structure extraction

ABC, initial sonic Mach number = 4, near the dissipation peak:

The first contour is at :

Dissipative structures are organised in sheets

Intermittence: Less than 1% of volume, ~25% of dissipation.  
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High dissipation is correlated with strong gradients of

The squared norm of this gradient :

Where

are the main axis

We design a tool to access the local geometry of gradients.

Numerical methods - Gradient geometry 
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Areas of high dissipation are locally planar  

All the simulation cells 
High dissipation cells  
 

Variations in state variables occur mainly in the 
direction of the scan.

Numerical methods - Gradient geometry 
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Numerical methods - Scan profiles

Velocities

Dissipation

Density and
total pressure

Magnetic 
field

We examined a large number of profiles in order to sort them out
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Numerical method – Heuristic identification 

Champ B

Fast shock Slow shock Alfvén discontinuity

These are our heuristic criteria for identifying 

Densité et
Pression totale
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Numerical methods - Decomposition of gradients into pure waves

In isothermal MHD there are 6 waves (3 natures x 2 directions) that can propagate
when the fluid is disturbed: 

Fast magnetosonic wave (right and left) 
Alfvén waves (right and left)
Left magnetosonic wave (right and left) 

These waves form a basis for local gradients  

We can always decompose the local gradients into
 Slow/Fast magnetosonic and intermédiaire (Alfvénique) gradients 
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Numerical methods - Structure identification

The identification is based on two independent sets of criteria
(heuristic + pure wave decomposition)

Fast 
magnetosonique 
wave

Slow 
magnetosonique 
wave

Alfvén wave

Fast shock Slow shock Rotationnal disc. Parker sheet

Alfvén discontinuities

Slow 
magnetosonique 
wave
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OT M4 (early time) ABC M4 (early time) 

The speed jumps between pre- and post-discontinuity are consistent with 
the identifications

Méthodes numériques - Vérification des identifications

Planarity default 

Upstream fluid velocity Upstream fluid velocity
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Extraction and analysis of dissipative structures

We perform scans and identifications until all cells belonging to dissipation structures 
are identified.

(OT near the dissipation peak)
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Impact of initial conditions 

OT M4 (near the dissipation peak) ABC M4 (near the dissipation peak) 

59 % of scans identified 74 %   of scans identified

UnID & 
MisID

Chocs fast

Chocs slow
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Temporal evolution of dissipation mechanisms

Comparison of initial conditions (flow) : 
 

The impact of the initial conditions on the structures is erased after a turnover 
time. Most of the dissipation then occurs in rotational discontinuities and Parker 
sheets

Chocs fast
Chocs slow Rotationnal disc. 

 Parker
sheet
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Variation of dissipative constants 

Brandenburg (2014): an increase in Pm leads to an increase in
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We confirm the result of Brandenburg (2014). 

This change is explained by the change in  

Variation of dissipative constants 
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Conclusions et perspectives

● In compressible MHD turbulence, regions of high dissipation are sheets.

● Four types of dissipative structures are systematically characterized.

● Most of the dissipation occurs in rotational discontinuities and Parker sheets after a turnover time.

● The distribution of these structures depends on the initial flow at an early stage.

● The impact of the IC on these structures fades after about one turnover time.

● The dissipation in our simulations is a mixture of physical and numerical dissipation
 numerical dissipation (~60%-40%).

● We propose a method to recover locally the numerical dissipation. 

Footprint of initial conditions ?

Numerical or physical dissipation?

What form does dissipation take in an isothermal MHD regime? In what type of structure?

● The magnetic Prandtl number does not change the type of dissipative structures that form. 

● It changes the ohmic/viscous dissipation within the dissipative layers.

Do the microphysical dissipative constants of the medium have an impact?
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