Turbulence in the diffuse multi-phase interstellar medium

Marc-Antoine Miville-Deschênes CNRS, AIM, Paris-Saclay, France

A few words on ISM statistics

ISM power spectrum slope flatter than K41

Miville-Deschênes et al. (2007)

Density P(k) of compressible turbulence

Slope flattens with increasing Mach number

Kim & Ryu (2005)

Non-stationarity of the interstellar density distribution

Miville-Deschênes et al. (2007)

Interstellar turbulence is multiphase and it is important for star formation

GALFA-HI ; Peek et al. (2011)

Region towards (l,b) = (157, -22.8) $40^{\circ} \times 20^{\circ}$ in size.

RGB : -41.6, -39.4, -37.2 km/s

RGB : -4.0, -1.8, and 0.4 km/s

RGB : 15.8, 18.7, and 21.7 km/s

21 cm data showing a thermally bi-stable ISM

CNM formation linked to WNM pressure and Mach number

HD simulation of thermally bi-stable turbulence

Saury et al 2014

The condensation process is favored in pressurized sub/transonic WNM when cooling time < dynamical time

thermal instability act as a regulation process for star formation

CNM formation linked to WNM pressure and Mach number

Saury et al 2014

The condensation process is favored in pressurized sub/transonic WNM when cooling time < dynamical time

thermal instability act as a regulation process for star formation

Mapping turbulence with 21 cm data

Application on 21 cm observations of the North Ecliptic Pole field

ROHSA : decomposition of emission on a Gaussian basis Marchal et al. (2019)

Application on 21 cm observations of the North Ecliptic Pole field

ROHSA : decomposition of emission on a Gaussian basis Marchal et al. (2019)

Mapping each HI phases in the diffuse ISM

- Separate phases using ROHSA
 - WNM ~ 64% lacksquare
 - LNM ~ 28%
 - CNM ~ 8%

North Ecliptic Pole 12x12 degrees 21 cm (GBT)

• Estimate depth and distance of WNM using 3D dust tomography

Marchal + (2019), Marchal & Miville-Deschênes (2021)

CNM shows more structure at small scales

- Typical N_{HI} CNM ~ a few 10^{19} cm⁻²
- Scale is a fraction of pc
- Volume filling factor of 1%

Thermal and turbulent properties of the Warm Neutral Medium in the solar neighborhood

Marchal & Miville-Deschênes (2021)

- First map of WNM column density and velocity field
- WNM is ~ 64% of the mass in this field
- Pressure ~ 4400 K cm-3
- Density ~ 0.7 cm-3
- Temperature ~ 6000 K
- Density contrast ~ 0.6
- Mach number ~ 0.9
- Volume filling factor ~ 0.6
- Turbulence velocity dispersion at 1pc is 0.8 km/s, similar to what is observed in denser gas
- Velocity power spectrum compatible with K41

Thermal and turbulent properties of the Warm Neutral Medium in the solar neighborhood

Marchal & Miville-Deschênes (2021)

- First map of WNM column density and velocity field
- WNM is ~ 64% of the mass in this field
- Pressure ~ 4400 K cm-3
- Density ~ 0.7 cm-3
- Temperature ~ 6000 K
- Density contrast ~ 0.6
- Mach number ~ 0.9
- Volume filling factor ~ 0.6
- Turbulence velocity dispersion at 1pc is 0.8 km/s, similar to what is observed in denser gas
- Velocity power spectrum compatible with K41

Effect of filling factor on statistical estimators

- The P(k) is flatter due to non-zero filling factor.

 The exact correction depends on the morphology of the voids, and if they are correlated to the density field or not.

Large variability of the CNM fraction as a function of environment

GHIGLS data - CNM 30%, up to 70% Taank, AM et al, submitted

72° 55°00' 54°30' 70° 00' 68° 53°30' 00' 66° 16^h28^m 20^m 24^m RA 10^h 10^m 09^h 50^m 10 0^m 40 J2000 R. A. 30 20

> **Besson et al, in prep ROHSA-GPU** DHIGLS data - CNM ~ 20%

IV Arch - IVC ~ 2-3 kpc

Complex C - HVC ~ 10 kpc

Marchal, et al 2021 ApJ 921, 11

DHIGLS data - CNM ~ 7%

Spectral analysis of 21 cm emission extracting the widths of features in HI spectra

IV. Fourier transform of 21cm data

Marchal et al in prep.

IV. Fourier transform of 21cm data

Marchal et al in prep.

Mapping interstellar turbulence with dust proof of concept

Planck - 5 arcmin

WISE - 15 arcsec

MegaCam - 0.6 arcsec

• Resolution increased by a factor 500

• No sign of slope change down to 0.01 pc

THE ASTRONOMICAL JOURNAL

High-latitude reflection nebulosities illuminated by the galactic plane

Hale Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California 91101 (Received 28 June 1976)

Allan Sandage

THE ASTRONOMICAL JOURNAL

High-latitude reflection nebulosities illuminated by the galactic plane

Hale Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California 91101 (Received 28 June 1976)

Allan Sandage

Optical scaterred light as a tracer of column density ?

Optical scaterred light as a tracer of column density ?

Scattered Light - CFHT MegaCam - g,r,i

CFIS - MegaCam r band

