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1. Presentation of the Pipe Nebula region

2. Objectives and presentation of the observations

3. The gas dynamic and filamentary structures characterization

4. Magnetic field intensity estimation

5. A study of the dense cores

Outline of the talk 2



Filamentary clouds which do not form stars everywhere

§ In the Ophiucus region, ~ 4° latitude,

Ø 145 ± 16 pc (Alves+07, Hipparcos)

Ø 163± 5 pc (Dzib+18, Gaia DR2)

§ Filamentary shape, length ~ 15-20pc

§ Well studied cloud: multiple observations of gas, dust, and magnetic 
fields

§ The Pipe is separated in 3 regions (Alves+08)

- B59 : Forming stars 

- Stem : Tenuous filaments, few dense cores

- Bowl : Tenuous or dense filaments, young dense cores 

§ What makes star formation efficiency so different across the Pipe ? 

§ Similarities with the Polaris molecular cloud

- No star formation, a handful of dense cores (Wagle+15); 
network of tenuous or dense filaments

- BUT less ordered magnetic fields

§ Interplay between gas dynamics and magnetic fields
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Herschel-SPIRE 
view at 250𝜇m



A well ordered magnetic field 4

§ A highly ordered B on parsec scale at the Bowl/Stem limit

Ø 𝛿𝜑 = 2.54°
§ Davis-Chandrasekhar-Fermi:

B ≈ 9.3 n(H!)
∆#
$%

Ø High magnetic field intensity ? 

§ Alves+08 ~ 65𝜇𝐺

Top: Polarization angle from Franco+10 on a star density map from Lombardi+06
Bottom: Franco+10, Polarization angle across the Pipe

Polarization angle from Planck+15

Bowl

Stem

B59



Large-scale structures shocking 5

§ Superposition of 2 velocity structures on large scales

§ Polaris: two components separated by 3.5 km/s, almost no overlap 
(Falgarone+09)

§ Pipe nebula
- two components separated by 2.5 km/s, overlapping over a broad 

area ~ 5.7pc

- Collision of filamentary molecular clouds (Frau+15)

Muench+07
Star density map (Lombardi+06) 

Frau+15 Schematic view of the filaments collisions. 



§ In the region of overlapping velocity components, at the Bowl/Stem limit

§ The largest 12CO(1-0) map (~ 17.5deg2) at this resolution (~ 32’’ ~ 5000 
au) of the Pipe Nebula

Ø Dynamical analysis
Ø Physical conditions
Ø Tracers of turbulence
Ø Quantitative constraints on the interplay between B and 

kinematics

§ Multi-line observations of 8 dense cores + 16 others positions (12CO(1-
0), 12CO(2-1), 13CO(1-0), C18O(1-0),...)

Ø Physical conditions

Ø Objective: Studying the role of turbulence in filament and 
dense core formation

Our observations with the IRAM-30m 6

Herschel-SPIRE view 
at 500𝜇m

B59

Stem

Bowl



A rich 12CO(1-0) dynamic with numerous filamentary structures 7

§ Large structure at v < 4 km/s and at v > 5km/s !

§ Structures dynamically linked together
Ø Continous emission between large-scales structures

Velocity tomography. Each plot represents the emission at a given velocity, indicated in the top left part

Animated map smoothed at 20 mpc



Dynamic of 12CO(1-0) emission linked to large scale structure 8

~ 1.9 pc

RA

Dec

One velocity component at 
mainly v < 4 km/s

Spectra averaged on 200x200’’

Emission integrated at v < 4km/s  

§ 12CO(1-0) dynamic coherent with large scale structures

Ø Spatial coherence with the 3.5 km/s structure

50

Emission integrated at v < 4km/s overlapped
on 13CO(1-0) contours from Onishi+99  



Dynamic of 12CO(1-0) emission linked to large scale structure 9

~ 1.9 pc

RA

Dec

Spectra averaged on 200x200’’ § 12CO(1-0) dynamic coherent with large scale structures

Ø Second structure extended to higher velocity > 5km/s!

50

Velocity components at 
mainly v > 5 km/s

Emission integrated at v >5km/s  Emission integrated at v >5km/s overlapped
on 13CO(1-0) contours from Onishi+99  



§ High number ~314 of structures at small scales, with ~ 284 filaments

§ Filaments mainly parallel to B, others perpendicular.

§ One of the smallest transverse size: (0.06 ± 0.02) pc (dist=163pc)

§ Two to three distributions in orientation

- Parallel and perpendicular to B

Filamentary structures well aligned with B 10

Parallel to B
Perpendicular to B

Distributions of the filaments characteristics

B
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: 𝓜~𝟏𝟒 (Ostriker+01)

• : 𝜷~𝟑𝑬(−𝟒) | 𝟐𝑬(−𝟑)

Ø 𝜷<<1 : Strong field

Magnetic field intensity estimation 11

Crutcher+10: |B| versus nH from Zeeman measurements.

245

89

Large scale structure 
> 5 km/s
∆v ~ 0.5 𝑘𝑚/𝑠
𝐼()~ 3.64 K.km/s

Large scale structure 
< 4km/s 
∆v ~ 1 𝑘𝑚/𝑠
𝐼() ~ 6.92 K.km/s 1E3 2E3

§ B ≈ 9.3 n(H!)
∆#
$% (Ostriker+01)

Ø 89≤ B (µG)≤245

Ø High magnetic field intensity

Average of the 12CO(1-0) emission at the same coordinates as polarimetric 
measurement from Franco+10

Polarization angle from 
Franco+10 



§ Detection of 12CO(1-0), 12CO(2-1), 13CO(1-0), C18O(1-0), some HCO+

§ Not detected
- HCN (𝜎 = 0.025 𝐾)
- N2H+ (𝜎 = 0.019 𝐾)
- 13CN(1-0) (𝜎 = 0.03K)
- 13CS(2-1) (𝜎 = 0.021 𝐾)

§ Multi-components fitting : 4 to 5 gaussian components

§ Gaussian fitting for each velocity component and using radiative transfert 
equations:

1E20 ≤ N(𝐻) [𝑐𝑚*!] ≤ 1𝐸21
0.31 ≤ 𝐴+ [𝑚𝑎𝑔] ≤ 2.18

§ From Rathborne+09, based on infrared measurements of dust extinction and 
automatic core identification:

1E21 ≤ N(𝐻!) [𝑐𝑚*!] ≤ 1𝐸22
2.0 ≤ 𝐴+ [𝑚𝑎𝑔] ≤ 7.4

§ 𝐴+ of a dense core ~ 2.8 mag

Ø Rat51, a false positive dense core

Ø Dense cores, or projected superposition?

Projection effects or dense cores ? 12

Spectra of core #51 (numbered from Rathborne+09)

Usually associated to high-
density tracers BUT need 
more transitions to be 
compared with 



§ Large-scale map at 32’’-resolution of highly dynamic, non star-forming region in the Pipe molecular cloud

§ A test case for strongly magnetized turbulence
Ø Colliding clouds caught in the act? Turbulent energy injection at the Bowl/Stem limit ?
Ø Two 12CO(1-0) velocity components consistent with large scale filamentary structures in 13CO(1-0)
Ø A Mach number of 14, and beta plasma of 3E-4, 2E-3

§ Formation of filaments and dense core in such conditions
Ø Network of tenuous filaments in the vicinity of a dense core: Projection effects? False positivie ? General in this higly dynamic region!
Ø Work in Progress: Further studies of dense cores in the vicinity

Ø A case study to compare with numerical simulations !

Ø Probe the role of turbulence in filament and dense core formation !

Thank you for your attention

Summary, and more results to come... 13



Dissecting a Position-Position-Velocity cube 14

§ Cube with 187x149 pixels, with one spectrum per pixel
- 3 dimensions: 2 in spatial and 1 in velocity space

Spectra Velocity Channel map



Position-Velocity cut

§ Spectra of one row/column stacked
Ø Velocity gradient

Annexe PV-cut: representing the observations 15



Spectra averaged

§ Spectra of a region, averaged by proximity
Ø Spectra evolution in 2D

Annexe: Representing the observations 16



Velocity channel map

§ Velocity channel plotted one by one
Ø Velocity structure

Annexe: Representing the observations 17



§ 314 filaments detected

Ø High number of filaments

§ Two to three distributions in orientation

- Parallel and perpendicular to B

§ Longitudinal size mainly lower than 0.4 pc

§ One of the smallest transverse size: (0.06 ± 0.02) pc (dist=163pc)

Filamentary structures characterization 18

Parallel to B
Perpendicular to B

Distributions of the filaments characteristics



§ In the region of overlapping velocity components, at 
the Bowl/stem limit

§ The largest 12CO(1-0) map at this resolution of the 
Pipe Nebula (Onishi+99 observations)

- 42 fields of 5’x5’ ≤17.5 deg2 | 27 deg2

- HPBW 32’’ = 22 mpc = 4538 au | 4’ = 35065 au
- Spectral resolution: 0.1 km/s | 0.1 km/s
- Number of spectra: 27863
- Typical rms: 0.5 K | 0.08 K

§ Multi-line observations of 8 dense cores + 16 others 
positions

- 12CO(1-0), 12CO(2-1), 13CO(1-0), C18O(1-0)

- bonus lines: HCN, HCO+, N2H+ 

§ Total of 113hr (August 2021, January 2022) + 16hr 
planned 18 to 21 of June 2022 

Our observations with the IRAM-30m 19

Herschel-SPIRE view at 500𝜇m

B59

Stem

Bowl



Annexe - CV: Large centroid velocity differences 20

Centroid Velocity map

§ Gradient of CV values ~3 km/s

§ Spatial correlation with high velocity 

structure ?

CV (km/s)



Annexe - CV: Large centroid velocity differences 21

Centroid Velocity map

CV (km/s)

§ Gradient of CV values ~3 km/s

§ Spatial correlation with high velocity 

structure ?



Annexe: Gradient of the centroid velocity 22

§ Centroid velocity gradient trace intense velocity shear in a turbulent gas (Hily-Blant+2009)
Ø Differences pixel per pixel of the centroid velocity at a given distance

Centroid 
Velocity map

lag



Annexe: Gradient of the centroid velocity 23

§ Centroid velocity gradient trace intense velocity shear in a turbulent gas

§ Structure with high velocity gradient
Ø Velocity shear from small (0.1pc) to large scale (1pc)

Centroid Velocity Increment map. Lag is given by l in parsec.



Annexe: One of the smallest filament 24

§ Transverse size: (0.06 ± 0.02) pc 

§ Uncertainty equals the angular resolution of our data 
!



Annexe: Spectra overview of the 12CO(1-0) map 25

~ 1.9 pc

RA

Dec



§ Two unknowns are opacity profile and excitation temperature, but can be estimated with multi-line analysis. Need to assume that the excitation temperature is 
identical for the three CO isotopologs. For every emission Tmb:

T#$ = [J%(T&') − J%(T$()](1 − e)*!)

where T$( is the temperature of background emission assumed to be a black-body, 𝜏%the line center optical depth at frequency 𝜈.

§ For an optically thick transition (𝜏% ≫ 1), we have J%(T&') = Tmb+ J𝜈(Tbg) , then

Tex =
1%
2
ln 1 + 1%

2
3

4!"56#(4"$)
-1

§ Using Tex we can calculate J%(Tex):

J%(Tex) =
h𝜈
k9

1
exp(h𝜈/k9Tex) − 1

§ The opacity can be calculated with:

τ18 = −ln 1 −
T18

J%(Tex) − J%(Tbg)

§ Or using : 

4"#
4"$

= 3)&%&"#

3)&%&"$
= 3)&%&"#

3)&%&"#/())

§ Then, using the opacity profile of  an optically thin transition (which will be better approximated by a Gaussian), we can use :

N3< =
<=%*

>*
?

@+,(+

&-,/./01
+,

3)&%2!+,/./01
+, ∫ 𝜏%ABdv ≈ <=%*

>*
?

@+,(+

&-,/./01
+,

3)&%2!+,/./01
+, 1.064ΔvτC

with Q the particition function, AAB the Einstein coefficient for spontaneous radiative decay, gA the upper level multiplicity and Δv the FWHM.

Annexe: Column density calculations 26



§ Filamentary structures in channel maps
- Parallel to B
- Others neither parallel nor perpendicular to B

- Green: B from dust extinction (Franco+2010)

- Yellow: B from thermal dust emission (Planck 
Collaboration+ 2015)

§ Theoretical predictions from ideal MHD
- Low density: mostly parallel
- High-density: mostly perpendicular
- Consistent with Planck (Planck Coll. XXXV 2016)

Ø In a transition from tenuous to dense 

filaments ?

Annexe: Orientation of filamentary structures 27

Soler+2017

𝛽C: ratio of thermal to magnetic pressure  

𝜉 < 0 : 
Dust filaments 
perpendicular to 
B

𝜉 > 0 : 
Dust 
filaments 
parallel to 
B

𝛽C: ratio of thermal to magnetic pressure  



Annexe: 12CO(1-0) velocity channel map 28

TBN: One under two velocity channels are plotted for graphical reasons



Annexe: RMS of the integrated positions 29



§ A technical problem during winter observation run 
Ø Ghosts at 1 km/s from the signal

Ø Need to be very careful in the window definition

Annexe - Data reduction: The complexity of reducing a 17.5 deg2 PPV cube  30

Emission Ghost



§ How to deal with spectra so differents ?

Annexe - Data reduction: The complexity of reducing a 17.5 deg2 PPV cube  31

RMS map of our 12CO(1-0) cube, before baseline reduction. 
Colorscale in K. First observing run is easily seen as the almost 
centered red rectangle.

§ Main concerns are about baseline reduction
Ø Consequences at submap borders



Annexe - Data reduction: Resolving the data reduction problem 32

RMS map of our 12CO(1-0) cube, before baseline reduction. 
Colorscale in K. First observing run is easily seen as the almost 
centered red rectangle.

RMS map of our 12CO(1-0) cube, after baseline reduction. 
Colorscale in K. First observing run is easily seen as the almost 
centered red rectangle.

§ Working on a first cube with all the spectra not reduced
Ø Do not distinguish data between the two observing run

§ Took around 10 weeks to conclude on the data reduction 



12CO(1-0) ALMA-ACA observations of Dcl300.2-
16.9 in the Chamaeleontis region.

Annexe: Study of the dissipation of turbulence intermittency in molecular clouds

§ Turbulent pressure is the dominant support of the gas against self-gravity.
Ø Turbulent dissipation : key in formation of dense cores and stars

§ Study of turbulent dissipation combine structural and statistical analysis

Conception of a code in Julia to statistically pinpoints site of 
dissipation of turbulence intermittency using Principal 

Component Analysis

33

Herschel-SPIRE view at 250𝜇m



12CO(1-0) ALMA-ACA observations of Dcl300.2-
16.9 in the Chamaeleontis region.

Annexe: Study of the dissipation of turbulence intermittency in molecular clouds

§ Turbulent pressure is the dominant support of the gas against self-gravity.
Ø Turbulent dissipation : key in formation of dense cores and stars

§ Study of turbulent dissipation combine structural and statistical analysis

34

Herschel-SPIRE view at 250𝜇m

Pause because of lockdown 

Conception of a code in Julia to statistically pinpoints site of 
dissipation of turbulence intermittency using Principal 

Component Analysis



§ Determine the physical conditions in both structures, and dense 
cores

Ø Temperature, column density, extinction...

§ Provide quantitative constraints on the interplay between 
kinematics and magnetic fields

Ø Magnetic to turbulent energy ratio
Ø Gaz structures orientations with B

§ Examine the dynamic repercussion of the colliding filaments
Ø Markers of intermittency? 
Ø Constraints on the evolutionary state of dense cores?

What we want to do... 35

Herschel-SPIRE view at 500𝜇m

B59

Stem

Bowl



Annexe PV-cut: preparing Position-Velocity cut 36

51deg



Annexe PV-cut: oscillation visible in velocity space 37



Annexe PV-cut: oscillation visible in velocity space

§ Sinewave velocity profiles, with phase shifting
Ø Helical flows aligned with B ?

38



Comparisons with the Polaris flare molecular cloud 39

§ Network of tenuous and dense filaments

§ Located in a low star formation rate

§ Superposition of 2 velocity structures coherent on 
parsec scale

§ Vicinity of dense cores located at the velocity overlap

§ BUT a magnetic field less ordonate

§ Nearby cloud ~ 150 𝑝𝑐

Herschel column density, from Arzoumanian+20019. 


