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= Turbulence in space and astrophysical plasmas
= Phenomenology of Alfvénic turbulence: from weak to strong

% Dynamic alignment and reconnection-mediated regime
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%= A new theory: dynamic alignment and reconnection in weak turbulence

= 3D simulations: collisions of Alfvén-wave packets in reduced MHD




Turbulence in space and astrophysical plasmas
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Turbulence in space and astrophysical plasmas
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Introduction

Altvénic Turbulence




= incompressible MHD equations:

Alfvénic Turbulence




Alfvénic Turbulence

= incompressible MHD in the Elsasser formulation (n = v):
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Alfvénic Turbulence

= incompressible MHD in the Elsasser formulation (n = v):
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Alfvén waves traveling “up” or “down” the magnetic field B




Alfvénic Turbulence

= incompressible MHD in the Elsasser formulation (n = v):

non-linear interaction only between
counter-propagating Alfuén waves

Alfvén waves traveling “up” or “down” the magnetic field B




Alfvénic Turbulence

= incompressible MHD in the Elsasser formulation (n = v):

non-linear interaction only between
counter-propagating Alfuén waves

—V Pyt + [T

= g nViz~

Alfvén waves traveling “up” or “down” the magnetic field B

Alfvénic turbulence ~ interaction of counter-propagating AWs




Alfvénic Turbulence

% split into “background + Alfvénic fluctuations”:

B=By+0B
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Alfvénic Turbulence

% split into “background + Alfvénic fluctuations”:
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... (D) turbulence needs finite dissipation!




Alfvénic Turbulence

% split into “background + Alfvénic fluctuations”:

5 AT Vlneo
u=_uy+ou, + _ . 0B |
0z 5UJ_“\/4FQO

= ... (!) turbulence needs finite dissipation!

linear frequency: wa = kjva non-linear frequency: wy = k02



Alfvénic Turbulence

% split into “background + Alfvénic fluctuations”:

5 AT Vlneo
u=_uy+ou, + _ . 0B |
0z 5UJ_“\/4TQ()

= ... (!) turbulence needs finite dissipation!

linear frequency: wa = kjva non-linear frequency: wy = k02

| | . wnl k:J_éZ:: << _'l (“WEAK”)
= non-linearity parameter: X = — =
WA KkjvA -1 (“STRONG”)



Phenomenology of Alfvénic Turbulence

weak Alfvénic turbulence: a quick phenomenological derivation of the spectrum

& for a formal derivation, see, e.g.,

[Ng & Bhattacharjee, PoP 1996
[Galtier, Nazarenko, Newell, Pouquet, JPP 2000]
[Schekochihin, arXiv:2010.00699




Phenomenology of Alfvénic Turbulence

weak Alfvénic turbulence: a quick phenomenological derivation of the spectrum

ki + ko = k3

wikyn) +wkye) = wlkys) 7 no parallel cascade (k// = cst.), only a cascade i k | /

\l R e — - = - —_— = . - — _ — —
_ - — —_— _
—_ — = = — — —_ _ = — — —— = _——




Phenomenology of Alfvénic Turbulence

weak Alfvénic turbulence: a quick phenomenological derivation of the spectrum
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How many interactions are needed to produce a significant change in counter-propagating Alfvén-wave packets?
(i.e., A(0z2)/0z ~ 1)

crossing time ~ linear propagation time: 7A = (’~€||UA)_1

(change during

distortion time ~ non-linear time: 7 = (k02) ™" one collision)

as a random walk:

= assume changes accumulates " ( 02 )2 1 / ?— % CASCADE
inter. ™ = = R
: ) TIME




Phenomenology of Alfvénic Turbulence

weak Alfvénic turbulence: a quick phenomenological derivation of the spectrum

Z = — = _ _ —= = — = —— =

- fluctuations’ scaling and energy spectum 522
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Phenomenology of Alfvénic Turbulence

weak Alfvénic turbulence: a quick phenomenological derivation of the spectrum
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from constant energy flux through scales: Tcasc

I A very important consequece of these scalings is that an initially weak Alfvénic cascade will not remain weak!

non-linear frequency increases with decreasing scales,

while linear frequency is constant because there is no parallel cascade:

. L 1/2 / P __ e R0 '
wnl = k10z ~ k7 19 { ACB e o iy 520\ 32 42 )
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transition to critical balance (x ~ 1)



Phenomenology of Alfvénic Turbulence

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation

& for furhter details, see, e.g.,

[Goldreich & Sridhar, Ap) 1995]
Oughton & Matthaeus, ApJ 2020
Schekochihin, arXiv:2010.00699]




Phenomenology of Alfvénic Turbulence

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation

% At this point, linear, non-linear, and cascade timescales match each other:

il - A =  Tcasc ™~ Tnl



critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation

ABe e

Phenomenology of Alfvénic Turbulence

% At this point, linear, non-linear, and cascade timescales match each other:

il - A =  Tcasc ™~ Tnl

you can see the “critical-balance condition” as the result of causality:

the information about Alfvénic fluctuations decorrelating in the perpendicular

plane over an eddy turn-over time T, can only propagate along the field for a
length 4 at maximum speed va.

“So... CB is essentially AWs trying to keep up with the turbulent eddies...”




Phenomenology of Alfvénic Turbulence

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation

% At this point, linear, non-linear, and cascade timescales match each other:

il - A =  Tcasc ™~ Tnl

you can see the “critical-balance condition” as the result of causality:

the information about Alfvénic fluctuations decorrelating in the perpendicular

plane over an eddy turn-over time T, can only propagate along the field for a
length 4 at maximum speed va.

ABe e

“So... CB is essentially AWs trying to keep up with the turbulent eddies...”

AL
5,2)\L

/A - - Therefore, once Ty ~ Ta is reached, the balance is mantained.
ni,Aj

(In principle, this could be done by continuing the cascade with T, = const., or
by generating smaller §| such that Ta ~ §j/va ~ Tni keeps holding... it is the latter)




Phenomenology of Alfvénic Turbulence

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation

% At this point, linear, non-linear, and cascade timescales match each other:

tnl - A =  Tcasc ™~ Tnl




Phenomenology of Alfvénic Turbulence

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation

% At this point, linear, non-linear, and cascade timescales match each other:

tnl - A =  Tcasc ™~ Tnl

@ fluctuations’ scaling + spectum from € = const. (you know the drill):

~ € = const. =r oz X K = Esz(k1) x k, ,
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Phenomenology of Alfvénic Turbulence

Energy flux in k space
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Further Developments in Theoretical Models

dynamic alignment in Alfvénic turbulence: three-dimensional anisotropy

& for furhter details, see, e.g.,

[Boldyrev, PRL 2006]
[Schekochihin, arXiv:2010.00699]

reconnection-mediated regime in Alfvénic turbulence

& for furhter details, see, e.g.,

[Boldyrev & Loureiro, Ap) 2017]
[Mallet, Schekochihin, Chandran, MNRAS 2017]
[Schekochihin, arXiv:2010.00699]




Further Developments in Theoretical Models

dynamic alignment in Alfvénic turbulence: three-dimensional anisotropy

%= Observations and simulations show that dva and dba have a spontaneous tendency to

align in the plane perpendicular to the local mean field <B>), within an angle 0,

(e.g., Podesta et al., JGR 2009; Hnat et al., PRE 2011; Mason et al., Ap) 2011;
Wicks et al., PRL 2013; Mallet et al., MNRAS 2016; ...)

[Boldyrev, PRL 2006]



Further Developments in Theoretical Models

dynamic alignment in Alfvénic turbulence: three-dimensional anisotropy

%= Observations and simulations show that dva and dba have a spontaneous tendency to

align in the plane perpendicular to the local mean field <B>), within an angle 0,

(e.g., Podesta et al., JGR 2009; Hnat et al., PRE 2011; Mason et al., Ap) 2011;
Wicks et al., PRL 2013; Mallet et al., MNRAS 2016; ...)

[Boldyrev, PRL 2006]

L. the alignment between dva and dba v, S l/(p\— e ,.521
is not the same as the alignment . L
between dz+\ and dz)\! e >
(but they are related: see Schekochihin arXiv:2010.00699) v %b, [Wicks et al., PRL 2013]
. . . .. : , 622 622 dv2
alignment = depletion of non-linearities:  6zF - Véz* ~ sin ) T/\ SETN T’\ «— 0O T’\

I but remember that fluctuations cannot be perfectly aligned (Bx = 0) in order to have a non-linear cascade



E(kL)

Further Developments in Theoretical Models

dynamic alignment in Alfvénic turbulence: three-dimensional anisotropy

The effect of alignment is not only to make the non-linear interactions weaker,
but also to induce anisotropy in the plane perpendicular to the magnetic field B

= At this point one has three-dimensional anisotropy of the fluctuations!

a7

-5/3..7

[Boldyrev, PRL 2006]

[Boldyrev, PRL 2006]
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Further Developments in Theoretical Models

dynamic alignment in Alfvénic turbulence: three-dimensional anisotropy

The effect of alignment is not only to make the non-linear interactions weaker,
but also to induce anisotropy in the plane perpendicular to the magnetic field B

_ = At this point one has three-dimensional anisotropy of the fluctuations!

E(kL)

3 oy % [ong story short:
Q | 1S
= ar § (see Boldyrev, PRL 2006 for the derivation)
p. R
5 A gﬁ
’% ‘ \ é > — === = — = -
2 e ( T ———— —— . \
\,.CE. " o ) _1/4 _1/4 _3/2 \‘\\
VA i
J | Ok, o<k, . 0 ok =3 iee f
"‘7\~ = == = e e - = ,//

(also, now kj o le/z)

. kL ~ A7t



Further Developments in Theoretical Models

reconnection-mediated regime in Alfvénic turbulence

So, we had three-dimensional anisotropy, right? ... wait a minute!

doesn’t 3D anisotropy of the turbulent eddies look line a current sheet in the plane perpendicular to B?!
(YES, IT DOES!)

E(kL)

% if the eddies at a scale live “long enough” for the

[Boldyrev, PRL 2006]

tearing instability (i.e., reconnection) to grow, then we

[Boldyrev, PRL 2006] = \

can imagine that this process will be responsible for the

Ve
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- ’ 7
- z
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production of small-scale magnetic fluctations

. kL~ A1



E(kL)

Further Developments in Theoretical Models

reconnection-mediated regime in Alfvénic turbulence

So, we had three-dimensional anisotropy, right? ... wait a minute!

doesn’t 3D anisotropy of the turbulent eddies look line a current sheet in the plane perpendicular to B?!
(YES, IT DOES!)

Ay

,1 N/\\L

-3/2

eddy ||fet|me Tn],k-l ~ (eklkJ_&JkL)_l X kII/Z

AK{(K

5’UM)_1/2 o g-1/2111/8

tearing growth rate: v~ ~ k1dvg, (k'J_ . 0 i

[Boldyrev, PRL 2006]
[Boldyrev, PRL 2006]
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(77: resistivity, S = : Lundquist number)

i ky ~ A



Further Developments in Theoretical Models

reconnection-mediated regime in Alfvénic turbulence

So, we had three-dimensional anisotropy, right? ... wait a minute!

doesn’t 3D anisotropy of the turbulent eddies look line a current sheet in the plane perpendicular to B?!
(YES, IT DOES!)

E(kL)

A
i v
= X : reconnection-mediated cascade
i LE
= SE
> 2| & o . . . . . .
5 g . - L. this regime exists if the Lundquist number is
i) 3 . = large enough to separate such transition scale
S . =5 from the actual dissipation scale!
N . =z (see references at the beginning of this part)

. e k%



E(kL)

Further Developments in Theoretical Models

reconnection-mediated regime in Alfvénic turbulence

So, we had three-dimensional anisotropy, right? ... wait a minute!

doesn’t 3D anisotropy of the turbulent eddies look line a current sheet in the plane perpendicular to B?!
(YES, IT DOES!)

-3/2 =
AT

@ reconnection now defines the cascade time:

e | / ,,yrec

[Boldyrev, PRL 2006]

[Boldyrev, PRL 2006]

| Lourerro, Les
Houches 2019]
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spectrum of
reconnection-mediated turbulence
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Reconnection-mediated turbulence in simulations
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Results

[Cerri, Passot, Laveder, Sulem, Kunz, Ap]L (to be submitted)]

Can we do better, and can it be done in 3D?

YES!
just go back to a basic 3D setup: start from the building blocks of the Alfvénic cascade!



Results

[Cerri, Passot, Laveder, Sulem, Kunz, Ap]L (to be submitted)]

Can we do better, and can it be done in 3D?

YES!
just go back to a basic 3D setup: start from the building blocks of the Alfvénic cascade!

6723 grid
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Simulations performed with the Hamiltonian 2-fields gyro-fluid model/code by Passot, Tassi, Sulem, and Laveder

= model retains only Alfvén & kinetic-Alfvén modes, assumes strong anisotropy ( k <<k, ), ...



Results

[Cerri, Passot, Laveder, Sulem, Kunz, Ap]L (to be submitted)]

Can we do better, and can it be done in 3D?

YES!
just go back to a basic 3D setup: start from the building blocks of the Alfvénic cascade!

But we do it “WISELY”, i.e., with a “trick”:
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Results

[Cerri, Passot, Laveder, Sulem, Kunz, Ap]L (to be submitted)]

Can we do better, and can it be done in 3D?

YES!
just go back to a basic 3D setup: start from the building blocks of the Alfvénic cascade!

But we do it “WISELY”, i.e., with a “trick”:

——— Usually, one tries to increase yrc by achieving large S: requires extreme resolution!



Results

[Cerri, Passot, Laveder, Sulem, Kunz, Ap]L (to be submitted)]

Can we do better, and can it be done in 3D?

YES!
just go back to a basic 3D setup: start from the building blocks of the Alfvénic cascade!

But we do it “WISELY”, i.e., with a “trick”:

Let’s increase the non-linear time instead! (by considering a smaller non-linear parameter, y < 1) — >



Results

[Cerri, Passot, Laveder, Sulem, Kunz, Ap]L (to be submitted)]

A new theory

dynamic alignment and reconnection in weak turbulence




Dynamic Alignment and Reconnection in Weak Turbulence

[Cerri, Passot, Laveder, Sulem, Kunz, Ap]L (to be submitted)]

& [WI] “Asymptotically weak” regime (y << 1): obr ~ const.
0, kll =

L. A very important consequece of these scalings is that y(k) ~ const., so the cascade would remain weak...
...however, instead of standard transition to CB, one gets a transition to reconnection-mediated (strong) turbulence
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Dynamic Alignment and Reconnection in Weak Turbulence

[Cerri, Passot, Laveder, Sulem, Kunz, Ap]L (to be submitted)]

@ [WI] “Asymptotically weak” regime (y << 1): 0b,, ~ const.

& [WII] “Transitional” regime (y < 1):

0, kll =

L. A very important consequece of these scalings is that y(k) ~ const., so the cascade would remain weak...
..however, instead of standard transition to CB, one gets a transition to reconnection-mediated (strong) turbulence
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Results

3D Simulations

collisions of Alfvén-wave packets in reduced MHD




3D simulations of colliding AW packets

[Cerri, Passot, Laveder, Sulem, Kunz, Ap]L (to be submitted)]
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3D simulations of colliding AW packets

[Cerri, Passot, Laveder, Sulem, Kunz, Ap]L (to be submitted)]
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3D simulations of colliding AW packets

[Cerri, Passot, Laveder, Sulem, Kunz, Ap]L (to be submitted)]

ob.1/ Bo (o ~0.5)
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3D simulations of colliding AW packets

[Cerri, Passot, Laveder, Sulem, Kunz, Ap]L (to be submitted)]
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3D simulations of colliding AW packets

[Cerri, Passot, Laveder, Sulem, Kunz, Ap]L (to be submitted)]
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local slope

3D simulations of colliding AW packets

Simulations
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Spectral Index

[Kasper et al., PRL (2021)]

[Cerri, Passot, Laveder, Sulem, Kunz, ApJL (to be submitted)]
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Take home message(s)

% Derived new scalings of weak turbulence with dynamic alignment

new transition scales depend on Ma and §

& The fate of weak MHD turbulence is to become strong... but which type of strong

MHD turbulence?
emergence of reconnection-mediated turbulence depends on § and y

% First proof of reconnection-mediated turbulence in 3D simulations

(from a first-principle setup and with reduced MHD)

w COMING SOON: Cerri, Passot, Laveder, Sulem, Kunz, ApJL (to be submitted)

Thank you for your attention!




