Ionisation by magnetic reconnection events in T Tauri discs

Valentin Brunn

I. Context

Regions of interest

Interaction region between star magnetic field and disc magnetic field

Reconnection regions

Energetic particles are produced that will **ionise** the inner disc

Interests of ionisation in protoplanetary discs

Source of **heating** of disc and jet Initiate disc (prebiotic) **chemistry** Controls **accretion**

The study : **Ionisation** rates in T Tauri discs due to magnetic reconnection events

Procedure

$$\zeta(N) = 2\pi \int_{E_{ion}}^{\infty} j(E,N) \sigma_{ion,k}(E) dE \quad (s^{-1})$$

j(E, N): the propagated spectrum

$$j(E) = j_0(E_0) \frac{L(E_0)}{L(E)}$$

Structure : I. Disc Model II. Injection Model III.Particle Disc interaction

IV.Results

Injection model

Particle – Disc interaction

Padovani et al. 2009

II. Protoplanetary Disc Model

Chemical Model: ProDiMo (Woitke P. 2009)

Composition: Plasma, H, H₂ and He

Flare append at the **disc edge**

Magnetic Configurations

Vertical : Référence

Hyperbolic : Disque standard (Blandford, R. D., & Payne, (1982))

Quartic : Differential accretion in the disc

Toroidal Magnetic Configurations

Particles explore **different** column densities for each configuration

III. Particle and Radiation Model

Density as a function of flare size

Getman, K. et al. (2008) The Astrophysical Journal.

Bremsstrahlung Luminosity (erg/s):

$$L_X = 1.4 \times 10^{26} L_{10}(T)^3 n_{e,10}(T)^2 T_6^{1/2} g_E$$

 L_{10} : size of the flare over 10^{10} cm $n_{e,10}$: electron density over 10^{10} cm⁻³ T_6 : temperature over 10^6 K g_B : Bolometric Gaunt factor

ProDiMo computes the chemical structure of the disc for different flare temperatures

Atomic hydrogen is present deeper in the disc for hot flares with strong X-ray emission

Particle Injection

Power law spectrum as in solar flares

$$j_0(E,T_F) \sim \left(\frac{E}{E_{inj}(T_F)}\right)^{-\delta} \exp\left(-\frac{E}{100 \ MeV}\right)$$

 n_{NTh} : density of non-thermal particles E_{inj} : injection energy T_F : temperature of the flare

IV. Disc Ionisation Model

The loss function

$$\frac{dE}{dN} = -L(E)$$

The loss function describes a maximum of **interaction processes**

Loss functions

Loss function depends on the **particle** and the **medium** crossed

$$\overline{L}(E,s) = \sum_{i} f_{i}(s) L_{i}(E) \quad i = H, H_{2}, He$$

$$f_{i} = \frac{1}{s} \int_{0}^{s} \frac{n_{i}(s')}{n_{tot}(s')} ds'$$

We build a mean loss function at **each position**

$$j(E,N) = j_0(E_0) \frac{\overline{L}(E_0)}{\overline{L}(E)}$$

Padovani, M. et al (2009) Astronomy & Astrophysics.

Continuous slowing down approximation gives the propagated spectrum

$$\zeta(N) = 2\pi \int j(E, N) (1 + \phi(E)) \sigma_{ion}(E) dE$$

 σ_{ion} : ionisation cross section $\phi(E)$: ionisation by secondary particles lonisation rates
obtained from
propagated
spectrum

V. Results

Hotter flare, higher ionisation rate

Even weak flares are a dominant source of ionisation

Lower index, higher ionisation rate

 $\begin{array}{l} \textbf{Dominant source} \\ \textbf{of ionisation for} \\ \boldsymbol{\delta} < \textbf{5} \end{array}$

Toward a more Predictive Model

Ionisation rate are overestimated due to very localised results

Need of a spatial and time averaged model