

A step to the side F-type stars, solar-type stars, and the Sun

Besançon Journées de la SF2A 2022 - S11

09/06/2022

Sylvain N. Breton LDE3 - DAp - CEA Saclay

Supervisors R.A. García, A.S. Brun, P.L. Pallé In collaboration with A. Dyrek, G. Nowak, E. Pallé, S. Mathis, F. Pérez Hernández, S. Mathur, A.R.G. Santos, O. Benomar, K. Masuda, E. Corsaro, A. Lanza

Hot suns?

Late F-type stars 6000-6600 K

Convective envelope (but thinner) Convective core $\sim 1.2 - 1.5 \,\mathrm{M_{\odot}}$

The quest for rotational constraints

What about F-type stars ?

Late F-type stars have **fast convective flows** and are « fast » rotators : stochastic wave excitation should be enhanced compared to the Sun

(Neiner et al. 2012, 2020, Mathis et al. 2014, Augustson et al. 2020, Aerts et al. 2021)

3

Therefore, what are the g-mode surface amplitudes we can expect for late F-type stars ?

F-type star modelling in 3D simulations

 $M = 1.3 M_{\odot}$ $T_{\rm eff} = 6340 \, {\rm K}$ $\log g = 4.2$

 $\Omega_0 = 1 \,\Omega_\odot(F1a, F1b)$ $\Omega_0 = 3 \,\Omega_\odot(F3)$ $\Omega_0 = 5 \,\Omega_\odot(F5)$

Model resolution 1205 x 512 x 1024 (F1a) 1205 x1024 x 2048 (F1b, F3, F5)

Edge of the Star modelled from convective core taken r = 0.06 to 0.98 R_{\star} as an impenetrable boundary **IGWs excitation only** 0.07 F1a, F1b by the convective F3 0.06 **-** F5 envelope 0.05 Fraction 0.040.03 0.02 Surface rotation of 0.01 main-sequence Kepler F-type stars 0.00^L 25 30 10 15 20 $P_{\rm rot}$ (days) (Santos, Breton et al. 2021, Breton et al. in prep)

3D simulations with the ASH code (Clune et al. 1999, Brun et al. 2004)

Transition towards a solar regime as Rossby number decreases

(Augustson et al. 2012, Brun et al. 2017, 2022, Noraz, Breton et al., submitted)

Gravity-waves power spectrum

Power spectrum from ASH vs mode frequencies computed with GYRE.

(Townsend & Teitler 2013, Townsend et al. 2018, Goldstein & Townsend 2020)

$$\begin{array}{c}
 10^{-2} \\
 10^{-4} \\
 10^{-6} \\
 10^{-8} \\
 10^{-10} \\
 10^{-12} \\
 10^{-12} \\
 10^{-14} \\
 10^{-16} \\
 \end{array}$$

Rotation and mode excitation

Mode visibility near the surface

Modes signatures are detected at the top of the F5 simulation for $\ell = 3$ to 7.

(e.g. García et al. 2007 for mode signature detection method)

Modes amplitude compared to the Sun

2 orders of magnitude at $1 \Omega_{\odot}$ 6 orders of magnitudes at $5 \Omega_{\odot}$ (!!!)

(Alvan et al. 2014)

Looking for tigers: Kepler, a reliable ally

different catalogs

Roaring tigers with velvet paws

actually)

Tale of two balls of yarn

(Breton, Dyrek et al., in prep)

Evidence for nontransiting objects modulations in the light curves of two stars.

(Faigler & Mazeh 2011, Shporer et al. 2011, Shporer 2017, Millholland & Laughlin 2017, Lillo-Box et al. 2021)

How precisely can we characterise these systems ?

Light curves phase folding and RVs

Perspectives for star-companion characterisation

(Bolmont et al. 2015, Fuller 2017, Ahuir et al. 2021, Lanza 2022)

Well constrained stellar inclination

How to constrain orbital inclination without any transit?

[Check out apollinaire for your asteroseismic needs ! - it is documented and open source]

(Breton et al. 2022)

Conclusion and perspectives

Simulations

- As expected, rotation has an important effect on the properties of lowfrequency g modes (qua).
- We were able to detect g-mode signatures near the top of the simulation domain, from intermediate ℓ . **Observations**
- Low-frequency signal is difficult to disentangle in these stars. Evidence for non-transiting companions around two F-type solar pulsators. Opportunities to study how close companions and hot solar
- pulsators behave together.

Understanding these stars, their similarities and differences with solar analogs will help us to better characterise both populations