

The early and late evolution of our Galaxy through the lens of globular clusters

Giulia Pagnini CNES postdoctoral fellow at ObAS

Observatoire **astronomique** de Strasbourg | ObAS

JOURNÉES SF2A 2025

In collaboration with: P. Di Matteo, M.Haywood, P. Bianchini, A.Mastrobuono-Battisti, F. Renaud, M. Mondelin, O. Agertz, L. Casamiquela, S. Khoperskov, and N. Ryde

How did our Galaxy, the Milky Way, form?

Context: Milky Way formation

According to the ACDM scenario galaxy formation occurs in a hierarchical pattern: smaller galaxies merge together to build up the larger galaxies that we observe today.

merger tree of the Milky Way?

PRESENT DAY ~ 13.7 Gyr

Giulia Pagnini - pagnini@astro.unistra.fr

FIRST STARS

~ 1 Gyr

Context: Milky Way formation Satellites of the Milky Way and ongoing accretions

Observational evidence of ongoing mergers can be recognised in the Milky Way (but also in other galaxies) as stellar streams.

Satellite galaxies during their accretion process bring with them not only their field stellar populations but also their globular cluster system.

Context: Globular clusters (GCs)

Tracers of the hierarchical formation of galaxies

Malhan et al. (2022)

Credits: ESC

Gravitationally bound Massive: $\sim 10^5 M_{\odot}$ Compact: size \sim few pc Old: age > 10 Gyr

Observatoire			astronomique	
	de St	r	asbourg ObAS	

Context: Milky Way formation Searching for past accretions: spatial mixing

1) **SPATIAL INFORMATION:** positions on the sky + distances

2) DYNAMICAL INFORMATION: proper motions + line-of-sight velocities

3) CHEMICAL ABUNDANCES & AGES

Context: Milky Way formation Searching for past accretions: spatial mixing

1) **SPATIAL INFORMATION:** positions on the sky + distances

2) DYNAMICAL INFORMATION: proper motions + line-of-sight velocities

3) CHEMICAL ABUNDANCES & AGES

Bullock & Johnston (2005)

Disrupted satellites accreted in the past have lost their spatial coherence!

Context: Milky Way formation

Searching for past accretions: kinematic and "integral-of-motion" spaces

2) **DYNAMICAL INFORMATION**: proper motions + line-of-sight velocities

3) CHEMICAL ABUNDANCES & AGES

Searching similarities in the IoM spaces:

- orbital energy (E)
- total angular momentum (L)
- components of angular momentum (L_z , L_{\perp})

Since these should be conserved during a merging process.

Galactic globular clusters located in different regions of the E – L_z space are associated to different galactic progenitors

Testing the dynamical coherence of globular clusters

Method: N-body simulations

N-body simulations of a Milky Way type galaxy accreting one or two satellites over a period of 5 Gyrs

- point-like globular clusters
- galaxy mass

Pagnini et al. <u>2023, A&A, 673, A86</u>

Giulia Pagnini - pagnini@astro.unistra.fr

COOS CENTRE NATIONAL

V	V GC	S	
L	GCs		
2	GCs		
7		100.0	

Results: GC mixing in E–L_z space

Pagnini et al. <u>2023, A&A, 673, A86</u>

- 1. Globular clusters from the same progenitor do not group together
- 2. When multiple satellites are accreted, their cluster populations mix together

Giulia Pagnini - pagnini@astro.unistra.fr

Results: GC mixing in E–L_z space

Pagnini et al. <u>2023, A&A, 673, A86</u>

- 1. Globular clusters from the same progenitor do not group together
- 2. When multiple satellites are accreted, their cluster populations mix together
- 3. The population of clusters formed in-situ gets kinematically heated up

60

	Observ	atoire	astronomique	
		de Str	asbourg ObAS	

Context: Milky Way formation Searching for past accretions: chemical abundance spaces

only for ongoing SPATIAL INFORMATION: positions on the sky + distances mergers

2) **DYNAMICAL INFORMATION**: alone is not proper motions + line-of-sight velocities reliable

3) CHEMICAL ABUNDANCES

Stars belonging to satellite galaxies less massive than the MW have lower content of a elements

Accreted stars and globular clusters = low α sequence

Giulia Pagnini - pagnini@astro.unistra.fr

C

Context: origin of Galactic globular clusters

Chemical abundances could be the solutions

Can we disentangle the accreted sequence in chemical abundance spaces?

When considering their mean abundance values, there is still a superposition of globular clusters with different progenitors.

Context: origin of Galactic globular clusters

Chemical abundances could be the solutions

A new approach: Instead of averaging chemical abundances, we compare the full distribution of chemical abundances on a star-by-star basis within each cluster.

Globular clusters with similar chemical patterns likely share a **common origin!**

Giulia Pagnini - pagnini@astro.unistra.fr

Ob	Observatoire		astronomique	
	de	e Str	asbourg	ObAS

Context: wCentauri

• the most peculiar Galactic globular cluster

- $3 \times 10^6 M_{\odot} \sim 10$ times greater than the mean stellar mass of all Galactic GCs
- Stars with -2.2 < [Fe/H] < -0.4
- Spread in other abundances
- Extended age range of its stars

Nuclear remnant of an accreted galaxy with an initial stellar mass of about 10⁸ M_☉ Bekki & Freeman (2003)

→ ~12 globular clusters brought into the Milky Way Eadie et al. (2022)

Johnson & Pilachowski (2010)

malized RGB-Int1 Nor -2.0 -1.6 -2.4

ction

8. 0.10

Can we find the other clusters brought by the progenitor of ω **Centauri?**

RGB-Int2+3

[Fe/H]

RGB-

-0.8

RGB-MP

	Observ	/atoire	astronomiqu	
		de Str	asbourg ObAS	

If ω Cen is representative of the inner regions of a galaxy, then its chemistry is representative at least in part of the chemistry of the progenitor

Pagnini et al. <u>2025, A&A, 693, A155</u>

Context: nuclear star cluster and host galaxy

The case of M54 and the Sagittarius

Sagittarius (586) NGC 6715 (33)

NGC 6715/M54 is chemically representative of its host galaxy, Sagittarius

Clues of chemical similarities also between the nuclear star cluster of the Milky Way and the inner bulge

Method: clusters chemically compatible with ω Cen

Multidimensional chemical link between Galactic globular clusters

Distribution of ω Cen in 8-dimensional

chemical space fitted with increasing number

Optimal number of components determined by minimising the Bayesian information criterion

For each cluster, the fraction of stars whose distribution falls in the GMM of ω Cen is estimated

To estimate the uncertainties, this procedure is repeated each time bootstrapping ω Cen and each GC data

NGC 6752, NGC 6656, NGC 6809, NGC 6273, NGC 6205, and NGC 6254 with a high level of compatibility!

Multidimensional chemical link between Galactic globular clusters

				0.8 -	NGC 5139 -
-	GC name	Fraction (%)	# stars		 NGC 5139 - ★ NGC 6656 -
-	OC hanne		ii stais	. 0.6 -	★ NGC 6656 -
	Ter10	98 ± 14	1		
	NGC2298	94 ± 22	2	0.4 -	
ωCen	NGC5139	89 ± 3	607 -		0.0
	NGC6752	84 ± 8	83	6 0.2 M	
	NGC6656	81 ± 8	68	0.0 -	-
"Metal-poor"	NGC6809	79 ± 13	18		
	NGC6273	76 ± 9	40	-0.2 -	0
	NGC6205	69 ± 14	26	0.4	° °
	NGC5024	64 ± 23	5	-0.4 -	1
	NGC6254	64 ± 15	50		-2.00 -1.75
	NGC6544	56 ± 20	15	15-	4
	FSR1758	56 ± 26	7	110	
	NGC1904	52 ± 18	26		
	NGC6093	47 ± 50	1	1.0 -	-
	NGC7089	44 ± 23	15		0
					*** **
				θ_//E	
				[A]	
				0.0 -	
					* * *
				-0.5 -	•
					L
					-2.00 -1.75
		D Observatei		A	
	Ų	de Paris	• PSL	A&A	Giulia Pagnini

+ [Ca/Fe], [K/Fe], [Mn/Fe]

Multidimensional chemical link between Galactic globular clusters

					1	
-					0.8 -	 NGC 5139 - NGC 5139 -
	GC name	Fraction (%)	# stars		0.6-	 ★ NGC 6752 - ★ NGC 6752 -
7	Ter10	98 ± 14	1			* NGC 0752 -
	NGC2298	94 ± 22	2		0.4 -	
ωCen	NGC5139	89 ± 3	607	j/F€	02-	
	NGC6752	84 ± 8	83	[Mg	0.2	
	NGC6656	81 ± 8	68		0.0 -	
	NGC6809	79 ± 13	18		~ ~	0
	NGC6273	76 ± 9	40		0.2-	O 69 66 6
"Metal-rich"	NGC6205	69 ± 14	26	_	0.4 -	•
	NGC5024	64 ± 23	5		l	2,00 1,75
	NGC6254	64 ± 15	50			-2.00 -1.75
	NGC0344	30 ± 20 56 ± 26	15		1.5 -	
	NGC1004	50 ± 20 52 ± 18	26			•
	NGC6093	32 ± 10 47 ± 50	20		1.0 -	
	NGC7089	44 + 23	15			
	1100/002	11 ± 25	15			୍ଦି ବ କ ସେ ସି କ ସେ କ୍ରି କ କୁ କ୍ରି ଭେତି କ
				I/Fe	0.5 -	
				[A]		
					0.0 -	
					۰ F	
				_	0.5 -	0
					l	-2.00 -1.75
				the second secon		
	Y	de Paris	~ PSL	A&A		Giulia Pagnini

+ [Ca/Fe], [K/Fe], [Mn/Fe]

Clusters match ω Cen even beyond GMM dimensions

For all these clusters, the overlap with ω Cen qualitatively occurs also in the other chemical spaces not used in the GMM

Similarities in the metallicity distribution functions (MDFs)

Similarities in the metallicity distribution functions (MDFs)

A secondary peak in ω Cen's MDF has been observed in literature

Not visibile in APOGEE, possibly due to the spatial coverage ω Cen, with a deficiency of stars in the central regions of the cluster

"Metal-rich" globular clusters

Similarities in the metallicity distribution functions (MDFs)

A secondary peak in ω Cen's MDF has been observed in literature

Not visibile in APOGEE, possibly due to the spatial coverage ω Cen, with a deficiency of stars in the central regions of the cluster

"Metal-rich" globular clusters

Pagnini et al. <u>2025, A&A, 693, A155</u>

If these clusters formed in similar, but not same, systems, they must have formed in environments that experienced extremely similar star formation phases

Is this just a coincidence? Do all systems at these metallicities look alike?

C

26

Do all systems at low metallicities look alike?

NCC6715 $NCC5979$ Tor0	0.8
NGCOTIS, NGCSZTZ, TEIS,	0.6
NGC3201 have a very low degree of	0.4
compatibility with ω Cen, despite	g/Fe]
their MDF modes and medians are in	<u>≥</u> 0.0
the metallicity range of ω Cen stars.	-0.2

1.5

1.0

[AI/Fe] 0.5 0.0

Pagnini et al. <u>2025, A&A, 693, A155</u>

NGC 5272

	Observatoire		atoire	astronomique	Ċ	
			de Str	asbourg ObAS	CENTRE NATIONAL D'ÉTUDES SPATIALES	

Do all systems at low metallicities look alike?

According to our GMM, the **chemical compatibility** of the Large and Small Magellanic Clouds (LMC, SMC), Sagittarius (Sgr), and Fornax (Fnx) with ω Cen is very low, even in the low metallicity regime.

> none of the clusters in the family of ω Cen have come from progenitors of these dwarf galaxies

We suggest that NGC 6752, NGC 6656, NGC 6809, NGC 6273, NGC 6205, and NGC 6254 formed in the same satellite, the progenitor of ω Cen, that we name as *Nephele*

29

Coming back to the E - L_z space

Nephele's GCs result scattered across the E - L_z plane as expected from the accretion of a massive satellite.

Pagnini et al. <u>2025, A&A, 693, A155</u>

Simulated distribution in E - L_z of **10 clusters** accreted together with their progenitor galaxy having an initially retrograde orbit.

Giulia Pagnini - pagnini@astro.unistra.fr

C

Can we "chemical tag" field stars in the Milky Way brought by Nephele or escaped from Nephele's clusters?

Chemically tagging stars to the Nephele accretion

Pagnini et al. to be submitted

Chemical filter

Using the same **multidimensional** chemical approach on APOGEE DR17 data tested on globular clusters, we searched for stars in the field chemically compatible with ω Cen.

1468 field stars chemically compatible with ω Cen, 697 of which are metal-poor

+ [Ca/Fe], [K/Fe], and [Mn/Fe]

Chemically tagging stars to the Nephele accretion

Metal-poor stars, chemically compatible with ω Cen in E - Lz

Pagnini et al. to be submitted

Chemically tagging stars to the Nephele accretion

Metal-poor + Al-rich stars, chemically compatible with ω Cen in E - Lz

Pagnini et al. to be submitted

Comparing data with simulations

Searching for stars chemically + kinematically compatible with Nephele's GCs

Kinematic filter

We searched which of these stars have kinematic properties compatible with simulated disrupted Nephele's GCs.

e-TidalGCs project : a library of simulations of Galactic globular clusters streams https://etidal-project.obspm.fr/

de Strasbourg | ObAS

Ferrone et al. (2023)

• 6 metal-poor stars consistent with ω Cen stream

Additional stars linked to Nephele GC streams (excl. NGC6752)

Pagnini et al. to be submitted

Comparing data with simulations

Searching for stars chemically + kinematically compatible with Nephele's GCs

Kinematic filter

We searched which of these stars have kinematic properties compatible with simulated disrupted Nephele's GCs.

e-TidalGCs project : a library of simulations of Galactic globular clusters streams https://etidal-project.obspm.fr/

Ferrone et al. (2023)

• 1 Al-rich star consistent with ω Cen stream Additional stars linked to NGC 6205 and NGC 6656

Promising to find stellar streams candidates beyond their immediate surroundings!

Pagnini et al. to be submitted

Giulia Pagnini - pagnini@astro.unistra.fr

CENTRE NATIONAL D'ÉTUDES SPATIALES

The early and late evolution of our Galaxy through the lens of globular clusters

Pagnini et al. to be submitted

- Dynamical coherence alone is insufficient for tracing the origins of globular clusters;
- Pagnini et al. 2025, A&A, 693, A155 Using a multidimensional chemical approach, we identify six GCs – NGC 6752, NGC 6656, NGC 6809, NGC 6273, NGC 6205, and NGC 6254 — as likely **co-natal with** ω **Centauri**, suggesting a shared origin in a now-destroyed satellite galaxy, Nephele;
 - By applying the same chemical tagging method to field stars, we identify:
 - \circ 1468 stars chemically compatible with ω Cen
 - Including 697 metal-poor stars and 81 Al-rich stars, possibly tracing *Nephele's* stellar debris;
 - A subset of these field stars also shows kinematic compatibility with simulated tidal streams from Nephele's GCs.

cnes