

Synthetic CO spectra of molecular clouds

Alexandre PERRONI (PhD, 2nde year)
Supervisor: Pierre HILY-BLANT

Context: universal properties of star formation

Main question

★ Dense Core Mass Function (DCMF) = origin of IMF ?

Dense cores

- ★ Form in massive filaments ($N_H > 10^{22} \text{ cm}^{-2}$)
- Formation is mediated by Gravity, Turbulence, Magnetic fields

My PhD: origin of the DCMF

- Role of turbulence in the formation of filaments and dense cores
- Formation of massive filaments in turbulent clouds
- Properties of turbulence in molecular clouds (MCs)
- Supersonic to subsonic tra

Methodology: benchmark turbulence statistical tools with numerical simulations

- Modeling of CO emission spectra from Mol transfer)
- → Observation of CO towards diffuse molecular clouds
- → Characterize turbulence properties: structure functions of high order

Taurus Molecular Cloud in 12CO(1-0) Goldsmith et al 2008 [1]

Clouds (chemistry of CO, radiative

Turbulence in molecular clouds

Turbulent motions

- set in at high Reynolds numbers (Re > 3000):
- U: characteristic velocity at scale L, dissipation scale η and kinematic viscosity v
- are characterized by different aspects: chaotic and messy, unpredictable, multi-scale, mixing

<u>Turbulence in molecular clouds</u>

- Reynolds number > 10⁶ at 10 pc scale
- supersonic and magnetized: characterized by the sonic and Alfvénic Mach numbers M_S and M_A
- strongly supersonic (M_S ~ 10) and trans- to super-Alfvénic (M_A ~ 1-3) on large scales (~ 10 pc)
- subsonic below the sonic scale [7]

$$Re_L = rac{U\,L}{
u} \, \propto \left(rac{L}{\eta}
ight)^{4/3}$$

 $M_s = \sigma_v/c_s,\, M_A = \sigma_v/v_A,\, v_A = B/\sqrt{\mu_0
ho}.$

CO abundance

- X_{CO} abundance driven by C/CO transition: (F)UV photodissociation, extinction, density
 - requires following UV propagation and shielding by H₂
 - however, precise H/H2 transition not needed for bulk CO
- Adopted methodology: empirical approach to compute CO/H abundance
 - o based on extensive grid calculations of Gong+17 [2]; provide analytical fit to the C/CO transition
 - o present work:
 - work with log10 quantities: x=log10(X), $\alpha=log10(A_{V})$
 - \blacksquare continuous transition from xmin=-8 to xmax=-3.9 centered at $\alpha_{\rm m}$
 - $\alpha_{\rm m}$ depends on density, cosmic-ray and ionization rate; expressed in terms of $\alpha_{\rm 1/2}$ (at which $X_{\rm CO} = X_{\rm max}/2$) as parameterized by Gong+17; in this work, alternative expression of $\alpha_{\rm 1/2}$

Spectral line

- Emergent spectrum calculated by integration of the radiative transfer equation
 - key point: each cell is treated as a uniform slab
 - o use formal solution of RT equation $I_V^i = I_V^{i-1} e^{-\tau_V^i} + (1 e^{-\tau_V^i}) B_{\nu}(T_{kin}^i)$.

$$\tau_V^i = \frac{c^3 A_{ul}}{8\pi v_0^3} \frac{3}{\mathcal{Q}(T_x^i)} \left(1 - e^{-5.5/T_{kin}^i}\right) N_{CO}^i \Phi(v_i, V)$$

• Intrinsic line profile: Gaussian, width = (therma + local) dispersions $\Phi(v_i, V) = \frac{1}{\sqrt{2\pi\sigma_v^2}} \exp{-\frac{(V-v_i)^2}{2\sigma_v^2}}$

$$\sigma_{v,i}^2 = (\Delta v_i/2.35)^2 + \frac{k_B T_{\rm kin}}{M}$$
.

- CO level populations: LTE at local gas kinetic temperature (uniform in CATS, not in ORION)
- Computation of the excitation temperature: the excitation temperature (now set as the medium temperature field) is going be computed with radiative transfer. (GALACTICA simulation check figures)

(see right fig right frame)

Results

- Diversity of line profiles
 - single peak, multiple peaks
- saturated profiles
- Strong dependence on sonic Mach number
- high Ms show two many, well separated peaks
- high Ms unlike observations of molecular clouds

Perspectives

- CO abundance prescriptions for gas-phase depletion at high density
- CO abundance: coupling with chemical calculations; review of CO chemistry
- Radiative transfer: 3D Monte Carlo calculations

- [1] Goldsmith et al 2008
- [2] Gong, Ostriker, Wolfire 2017
 [3] Burkhart et al 2020
- [4] Ntormousi et Hennebelle 2019
- [5] Hily-Blant & Falgarone 2007[6] Delcamp, Hily-Blant, Falgarone in prep.
- [7] Federrath et al 2021