école normalesupérieure université paris-saclay paris-saclay

What do C₂H₂ and H₂O trace in planet-forming regions of disks?

Benoît Tabone, Emilie Habart and the MINDS team

Institut d'Astrophysique Spatiale, Orsay, France SF2A 2025 - July, 2nd 2025

CNIS

Planet formation theories need constraints on disk properties to interpret the properties of exoplanets

10

100

End-product: populations of exoplanets

The C/O ratio and metallicity

- The C/O ratio and 'metallicity' ((C+O)/H) are key parameters to constrain planet formation (Madhusudhan et al. 2016)
- Indicator of when and where the accretion of gaseous planets starts (Cridland et al. 2017)
- Elemental abundances in disks set by complex processes

Need observational constraints

→ JWST probe the thermal emission from the inner disk <10 au

- Disk composed of gas and dust

-
$$n_{gas} \sim 10^8 - 10^{15} cm^{-3}$$

-
$$T\sim 50-1500$$
 K

-
$$R < 10\,$$
 au

Schematic representation of a protoplanetary disk adapted from Kamp et al. 2023.

- → H₂O, C₂H₂, HCN, OH, CO₂, CO widely detected
- \longrightarrow Diversity of JWST spectra of inner disks \longrightarrow Diversity of exoplanet atmospheres ?

The diversity of C₂H₂ and H₂O emission

JWST spectra of disks (MINDS), Grant et al. subm.

Strong correlation between H_2O and C_2H_2 emission with the stellar mass

 \longrightarrow Large dispersion of $F_{C_2H_2}/F_{H_2O}$ for T Tauri stars

The diversity of C₂H₂ and H₂O emission

JWST spectra of disks (MINDS), Grant et al. subm.

Strong correlation between H_2O and C_2H_2 emission with the stellar mass

 \longrightarrow Large dispersion of $F_{C_2H_2}/F_{H_2O}$ for T Tauri stars

Where does that diversity come from?

What drives the emission of C_2H_2 and H_2O in T Tauri disks?

Does the ratio $F_{C_2H_2}/F_{H_2O}$ trace the C/O ratio in the inner disk ?

The diversity of C₂H₂ and H₂O emission

JWST spectra of disks (MINDS), Grant et al. subm.

Strong correlation between H_2O and C_2H_2 emission with the stellar mass

 \longrightarrow Large dispersion of $F_{C_2H_2}/F_{H_2O}$ for T Tauri stars

Where does that diversity come from?

What drives the emission of C_2H_2 and H_2O in T Tauri disks?

Does the ratio $F_{C_2H_2}/F_{H_2O}$ trace the C/O ratio in the inner disk ?

We need thermo-chemical models

Thermochemical models for inner disks

- Using the thermo-chemical model DALI (Dust And Lines) (Bruderer+2012, Bruderer2013)
- \longrightarrow Self-consistent solution : $T_{gas} \longleftrightarrow$ chemistry, according to a chemical network
- New processes added for inner disks: ro-vibrational cooling, line overlap, UV shielding; and new chemical network

UMIST vs UMIST + KIDA

- Reactions in KIDA, dramatically increases the abundance of C_2H_2 due to reactions with high activation barrier (not in UMIST)
- Combining databases for inner disks is better to allow multiple formation and destruction pathways

7 reactions are responsible for this 3 orders of magnitude difference:

$$C_2 + H_2 \rightarrow C_2 H + H^{(1),(3)}$$
 $E_{barrier} = 1420 \text{ K}$
 $C_3 H + H_2 \rightarrow C_3 H_2 + H^{(1)}$ $E_{barrier} = 950 \text{ K}$
 $H_2 CCC + H_2 \rightarrow CH_2 CCH + H^{(1)}$ $E_{barrier} = 8760 \text{ K}$
 $C_4 + H_2 \rightarrow C_4 H + H^{(1)}$ $E_{barrier} = 1420 \text{ K}$
 $C_4 H + H_2 \rightarrow C_4 H_2 + H^{(1)}$ $E_{barrier} = 950 \text{ K}$

$$N + CH_2CCH \rightarrow C_2H_2 + HCN^{(2)}$$

 $C_4H_3^+ + e^- \rightarrow C_2H_2 + C_2H^{(2)}$

- ⁽¹⁾ Harada et al. 2010
- (2) Loison et al. 2017
- ⁽³⁾ Pitts et al. 1982

Carbon and Oxygen in T Tauri disks

- → With a solar C/O (~0.45)
 - → All carbon into CO
 - → Excess of oxygen into H₂O

Brigthness of C₂H₂ in inner T Tauri disks

- Water creates a forest of rotational lines in the MIR
- The C_2H_2 feature at 13.7 um is bright, even with a solar C/O

Where does the carbon come from?

Dissociation of CO releases free carbon available for hydrocarbons

How are carbon chains destroyed?

- Oxygen attacks carbon chains and form CO again
- Missing reactions with O or OH: strongly impacts hydrocarbons

C/O ratio

 \longrightarrow Significant difference of C_2H_2 emission with the C/O ratio, less significant for water

 \longrightarrow Jump at C/O > 1 : free carbon available to built hydrocarbons!

C/O ratio and gas-to-dust ratio

- \longrightarrow Significant difference of C_2H_2 emission with the C/O ratio, less significant for water
- \longrightarrow Jump at C/O > 1 : free carbon available to built hydrocarbons!
- \longrightarrow The gd also strongly impacts molecular features, particularly water

Metallicity

- The amount of Oxygen and Carbon also influences the shape of the spectrum:
 - Carbon-rich spectrum if: High C/O
 Low metallicity

JWST observations: non-solar abundances?

Acetylene emission overestimated:

JWST observations: non-solar abundances?

Acetylene emission overestimated:

T Tauri inner disks either: - low C/O?

- high metallicity?

JWST observations: non-solar abundances?

- Acetylene emission overestimated:
 - T Tauri inner disks either: low C/O?
 - high metallicity?
- \longrightarrow $F_{C_2H_2}/F_{H_2O}$ seems a good tracer of C/O but affected by the gas-to-dust ratio

Next steps

- Need additional constraints on **disk structure** to measure the C/O: VLTI/MATISSE, VLT/CRIRES ...
- Dust is important! Refine **grain properties** in models: size, settling ...
- \longrightarrow Go beyond C_2H_2/H_2O : HCN, CO_2 , C_4H_2 ?

- This work is part of the GTO MIRI MINDS (P.Is: Th. Henning and I. Kamp)
 - → ~ 30 collaborators
 - → ~ 120h JWST observing time
 - → 52 disks observed
 - 65% TTauri ($0.3 < M < 2M_{\odot}$)
 - 17% Very Low Mass Stars ($M < 0.2 M_{\odot}$)

Revolution with JWST: sensitivity and spectral resolution

- Revolution with JWST: sensitivity and spectral resolution

JWST/MIRI spectrum of Sz 98. From Gasman et al. 2023.

Distribution of hydrocarbons

The main hydrocarbon is CH_4 but the brightest is C_2H_2 , consistent with JWST observations

DALI

- —— Using the thermo-chemical model DALI (**D**ust **A**nd **Li**nes) (Bruderer+2012, Bruderer2013)
- \longrightarrow Self-consistent solution : $T_{gas} \longleftrightarrow$ chemistry, according to a chemical network
- New processes added for inner disks: ro-vibrational cooling, line overlap, UV shielding; and new chemical network

New chemical networks: workflow

Final network

New chemical networks: workflow

New chemical networks: workflow

New chemical networks: workflow

Line overlap implementation

Two separate lines close to each other can overlap when they are broaden by high column density

The lines « shield » each other : line overlap

Effect of line overlap. From Tabone et al. 2023

Line overlap implementation

 \longrightarrow Effect of the line overlap prominent in the main Q-branch feature of C_2H_2

UV shielding

lue Molecules can absorb UV photons and attenuate the UV field: $\sigma_{\!
u} N_i$

UV shielding

 $lue{}$ Molecules can absorb UV photons and attenuate the UV field: $\sigma_{\!
u} N_i$

UV shielding

 \longrightarrow Molecules can absorb UV photons and attenuate the UV field: $\sigma_{\!
u} N_i$

UV shielding

- Separation line/continuum reproduces very well the « real » self-shielding
- Crucial role of self-shielding at low column densities

Photodissociation rate of C_2H_2 as a function of the column density (shielding)

UV shielding

- Mutual shielding as implemented in DALI (shielded by continuum only)
- \longrightarrow Mutual shielding particularly efficient for: H_2O , C_2H_4 , C_3 , (C_2H_2)
- Mutual shielding not efficient for: CO₂, CH₄, NH₃, HCN

C₂H₂ and H₂O abundance map

- \rightarrow H₂O abundant in the inner disk
- $ightharpoonup C_2H_2$ emitting region is slightly deeper and closer to the star

Where does the carbon come from?

→ Dissociation of CO releases free carbon avai ≘

Abundance ratio between fiducial and fiducial without reactions (1) and (2). The red shaded area is the emitting layer of C_2H_2 .

Metallicity

The grid seems shifted to the right: water is brighter when the metallicity is increased...
... but it is actually degenerated with the C/O ratio

• When C/O < 1:

 H_2O line flux increases while C_2H_2 decreases

- O destroys carbon chains + C locked in CO
- When C/O > 1:

 H_2O line flux decreases while C_2H_2 increases

O locked in CO + more C available

X-ray luminosity

 \longrightarrow X-ray luminosity does not impact H_2O and C_2H_2 emission: balance of formation and destruction

Check the tau = 1 btw 10^27 and 10^33 because I don't raytrace it in my last models

Elbereth 2025 **10**

Elbereth 2025 **10**