The extreme physics of neutron stars: My observer's viewpoint

Sebastien Guillot

All pulsars are neutron stars, but not all neutron stars are pulsars!

$$\begin{array}{ll} R_{NS} \ \sim \ 10 - 15 \ km \\ M_{NS} \ \sim \ 1.0 - 2.0 \ M_{\odot} \\ B \ \ \sim \ 10^8 - 10^{15} \ G \\ P_{spin} \ \sim \ 0.001 - 10 \ sec \end{array}$$

All pulsars are neutron stars, but not all neutron stars are pulsars!

$$\begin{array}{ll} R_{NS} \ \sim \ 10 - 15 \ km \\ M_{NS} \ \sim \ 1.0 - 2.0 \ M_{\odot} \\ B \ \ \sim \ 10^8 - 10^{15} \ G \\ P_{spin} \ \sim \ 0.001 - 10 \ sec \end{array}$$

Neutron stars are the remnants of the core-collapse of massive stars.

Credits: NASA CXO / ESA / JPL

Crab Nebula X-ray+IR+Opt

A pulsar, at most wavelengths

Credits: NASA CXO

Cassiopeia A X-ray

A neutron star without pulsations

<u>SN 1987 A</u> X-ray+Optical

A neutron star, maybe ? *Fransson et al.* 2024

Where would neutron stars be on the HR diagram?

Where would neutron stars be on the HR diagram?

Neutron stars are amazing laboratories for extreme physics.

Outer Crust

Inner Crust

Outer Core

Extreme gravity

Particle accelerators

Extreme B-fields

High temperatures

Extreme densities

The extended family of neutron stars is quite broad. Each class exhibit its own phenomenology.

The structure of neutron stars is not well known beyond the first top kilometre.

1 OUTER CRUST NUCLEI ELECTRONS 1 2 INNER CRUST 2 NUCLEI ELECTRONS SUPERFLUID NEUTRONS 3 3 CORE SUPERFLUID NEUTRONS SUPERCONDUCTING PROTONS HYPERONS? DECONFINED QUARKS? COLOR SUPERCONDUCTOR?

Watts et al. 2016

The interesting (and complex) physics starts in the deep crust.

The cooling of neutron stars can also help probe the crust.

Early cooling of the neutron star in Cassiopeia A

The cooling of neutron stars can also help probe the crust.

Early cooling of the neutron star in Cassiopeia A

The cooling of neutron stars can also help probe the crust.

Cooling after accretion bursts

The cooling of neutron stars can also help probe the crust.

Cooling after accretion bursts

Large sample of neutron stars

Yakovlev & Pethick 2004

The cooling of neutron stars can also help probe the crust.

Cooling after accretion bursts

Large sample of neutron stars

Some neutron stars are much hotter than predicted by standard cooling.

At those temperatures, the neutron star emission peaks between Far-UV and X-rays.

Gonzalez-Caniulef, <u>SG</u> et al (2019)

Update in Stammler et al., in preparation

-9.5 $T_{BB} = 230,000 \pm 10\ 000\ K$ -10.0-10.5(Flux) -11.0b Q Q -11.5Far UV X-ray -12.0-12.5-13.0-1.5-2.0-1.0-0.50.0-2.5Log (Energy) 15

Using neutron star atmosphere models adapted to "low" surface temperatures

We have determined the temperatures of a handful of old isolated neutron stars.

Programme of HST observations (Opt. and far-UV) of three old isolated neutron stars

These measurements help constrain physical models of the crust

Adapted from Rodriguez, ..., <u>SG</u> et al. in prep.

A new multi-messenger method to probe the crust

Let's dive in the deep core...

D

2

3

1 OUTER CRUST

NUCLEI ELECTRONS

2 INNER CRUST

NUCLEI ELECTRONS SUPERFLUID NEUTRONS

3 CORE

SUPERFLUID NEUTRONS SUPERCONDUCTING PROTONS HYPERONS? DECONFINED QUARKS? COLOR SUPERCONDUCTOR?

Watts et al. 2016

Let's dive in the deep core...

Dense nuclear matter is described by an equation of state $P(\rho)$.

Measuring R_{NS} is difficult and measuring both R_{NS} and M_{NS} is even more difficult.

Measuring the radius with precision is much more difficult.

To measure the radius, we need to:
observe the surface thermal emission,
correctly model this emission,
know the distance independently.

By combining the measurements from a handful of neutron stars, we can constrain the equation of state of dense matter.

These measurements suffer from systematic uncertainties that can be hard to quantify.

But there is a new method, a better method.

Let's consider a neutron star with localised hot regions are the surface.

~10⁶ K

Let's consider a neutron star with localised hot regions are the surface.

~10⁶ K

Strong gravity permits seeing beyond the hemisphere of the neutron star.

Strong gravity permits seeing beyond the hemisphere of the neutron star.

NS properties inference (Likelihood statistical sampling)

Mass, Radius, EOS

NS properties inference (Likelihood statistical sampling)

Mass, Radius, EOS

Credits: NASA/GSFC We use data from NICER

Here is an example our the first results.

Riley, ..., <u>SG</u> et al. (2019)

An unexpected geometry that can be explained by an offset dipole thanks to multi-wavelength selfconsistent modelling

Pétri, <u>SG</u> et al. (2023)

The NICER Science Team published the results for two pulsars, which are also consistent with previous measurements.

The two independent analyses for each target are consistent

◆ PSR J0030+0451

- ▶ Riley, ... SG et al. 2019
- Miller, ... SG et al. 2019
- ◆ PSR J0740+6620
 - Riley, ... SG et al. 2021
 - Miller, ... SG et al. 2021

Cold Surface of MSP:Gonzalez-Caniulef, SG et al. 2019Multiple thermally-emitting NS:Baillot-d'Etivaux, SG et al. 2019

How can we exploit these measurements to understand dense nuclear matter ?

There are still many data sets to analyse to extract M_{NS} and R_{NS} count

Photon count

New results for **PSR J0437–4715** submitted

+ a handful of pulsars discovered in *Guillot et al* 2019

There are still many data sets to analyse to extract M_{NS} and R_{NS}

+ a handful of pulsars discovered in *Guillot et al* 2019

Thermal evolution studies to understand the crust

The thermal relaxation of the crust directly depends on its.

Surface temperature measurements can therefore help understand the crust.

Summary

Probing the core with <u>M_{NS} and R_{NS}</u> <u>measurements</u>

Different methods exist but the results obtained with NICER are the most reliable.

Uncertainties of 5–10% on R_{NS}