Approches science des données pour l'exploration des environnements circumstellaires en imagerie à haut contraste & haute résolution angulaire

Olivier Flasseur

travaux conjoints avec de nombreux collègues et étudiants, notamment du :

Exoplanetary science – some key scientific drivers

Frequency and diversity of planets? Architecture of systems? How do planets form? How do planets interact with the disk?

angular differential imaging (ADI) = temporal diversity

Peculiarities

- Faint signal from the exoplanets
- Non-stationary and spatially correlated strong nuisance component
- Strong fluctuations (stellar leakages)
- Multi-spectral data available

zoom

Goal: modeling the nuisance component (speckles + noise)

angular differential imaging (ADI) = temporal diversity data spatio-temporal slice cuts x $t_{14} = 04 \text{ min}$ zoomaround exoplanets PSF 1"

Peculiarities

- Faint signal from the exoplanets
- Non-stationary and spatially correlated strong nuisance component

max

- Strong fluctuations (stellar leakages)
- Multi-spectral data available

 \min

\Rightarrow Signal unmixing is critical

planetary signal

angular differential imaging (ADI) = temporal diversity

Peculiarities

- Faint signal from the exoplanets
- Non-stationary and spatially correlated strong nuisance component
- Strong fluctuations (stellar leakages)
- Multi-spectral data available

angular differential imaging (ADI) = temporal diversity

Peculiarities

- Faint signal from the exoplanets
- Non-stationary and spatially correlated strong nuisance component
- Strong fluctuations (stellar leakages)
- Multi-spectral data available

angular & spectral diff. im. (ASDI) = temporal & spectral diversity

Peculiarities

- Faint signal from the exoplanets
- Non-stationary and spatially correlated strong nuisance component
- Strong fluctuations (stellar leakages)
- Multi-spectral data available

 \Rightarrow unsupervised and regularized estimation from the data $_{3/13}$

Accurate estimation in large dimension - example

 \bullet Low nb of samples \Rightarrow empirical covariances very noisy / rank deficient

Accurate estimation in large dimension - example

- Low nb of samples \Rightarrow empirical covariances very noisy / rank deficient
- Data-driven and spatially adaptive regularization by *shrinkage*:

 \Rightarrow optimal estimation by risk minimization for various structures

Data science: essential for high-contrast imaging

Regularized reconstruction - framework

- Data model: $r = \mathbf{A} \, \mathbf{x} + \mathbf{f} \in \mathbb{R}^{NLT}$ with $\mathbf{x} \in \mathbb{R}^{N'L}$, $\mathbf{f} \gg \mathbf{A} \, \mathbf{x}$.
- Direct operator: $A \equiv$ scaling \circ fov \circ transmission \circ rotation \circ blur.

Regularized reconstruction of the spatio-spectral flux distribution *a*

Solving an inverse-problem:

$$\widehat{\boldsymbol{x}} = \operatorname*{arg\ min}_{\boldsymbol{x} > \boldsymbol{0}} \left\{ \mathscr{C}(r, \boldsymbol{x}, \boldsymbol{A}, \boldsymbol{\Omega}, \boldsymbol{\mu}) = \mathscr{D}(r, \boldsymbol{A}\, \boldsymbol{x}, \boldsymbol{\Omega}) + \mathscr{R}(\boldsymbol{x}, \boldsymbol{\mu}) \right\},$$

• $\mathscr{D}(r, \mathbf{A} \, \boldsymbol{x}, \boldsymbol{\Omega})$: data-fidelity term, depends on $\boldsymbol{\Omega}$ statistics of \boldsymbol{f} ,

• $\mathscr{R}(\boldsymbol{x}, \boldsymbol{\mu})$: regularization term, depends on hyperparameters $\boldsymbol{\mu}$.

Results: disk reconstruction from SPHERE-IFS data

statistical model ⇒ reduced residual stellar leakages image formation model ⇒ reduced artifacts & improved resolution Joint spectral processing ⇒ critical for complex disk structures Flasseur+, submitted to MNRAS, 05/2024 (https://arxiv.org/abs/2109.12644) 7/13

Deep learning: capturing residual correlations

ADI: Flasseur+, MNRAS 2023 (https://arxiv.org/abs/2303.02461) work funded by COBREX ASDI: Flasseur+, EUSIPCO, 2023 (https://arxiv.org/abs/2306.12266) (PI: A.-M. Lagrange)

Results: improved detection sensitivity

statistics + deep learning \Rightarrow gain & optimal far from the star

ADI: Flasseur+, MNRAS 2023 (https://arxiv.org/abs/2303.02461) work funded by COBREX ASDI: Flasseur+, EUSIPCO, 2023 (https://arxiv.org/abs/2306.12266) (PI: A.-M. Lagrange)

Deep learning: capturing residual correlations

Results: deep learning by-passes the limits of ADI

VLT/SPHERE-IRDIS data

parallactic rotation $\simeq 23^{\circ}$

T. Bodrito, O. Flasseur+, to be submitted

Results: deep learning by-passes the limits of ADI

VLT/SPHERE-IRDIS data

parallactic rotation $\simeq 10^{\circ}$

T. Bodrito, O. Flasseur+, to be submitted

Results: deep learning by-passes the limits of ADI

VLT/SPHERE-IRDIS data

parallactic rotation $\simeq 6^{\circ}$

T. Bodrito, O. Flasseur+, to be submitted

11/13

Results: deep learning by-passes the limits of ADI

VLT/SPHERE-IRDIS data

parallactic rotation $\simeq 2^{\circ}!$

T. Bodrito, O. Flasseur+, to be submitted

Context

Detection by deep learning

Conclusions

Progresses in data science \Rightarrow promising results

Some examples:

New planetary-mass object found in quadruple system

\Rightarrow improved completeness on VLT/SPHERE

> 20 candidates to be confirmed with second epoch analysis

a work funded by COBREX (PI: A.-M. Lagrange)

What's next?

Data peculiarities: high spectral diversity, instabilities, highly structured PSF, massive **Some strategies:** statistical /deep learning, data-driven approaches, data fusion

What's next?

Data peculiarities: high spectral diversity, instabilities, highly structured PSF, massive **Some strategies:** statistical /deep learning, data-driven approaches, data fusion

Thank you

Accurate estimation in large dimension - example

- Low nb of samples $(T \simeq L \simeq K) \Rightarrow \widehat{\mathbf{S}}_n^{\text{spat}}$ and $\widehat{\mathbf{S}}_n^{\text{spec}}$ noisy/rank-deficient
- Data-driven and spatially adaptive regularization by *shrinkage*:

Accounting for the variability of the nuisance component

 \Rightarrow large stellar leakages + outliers are identified & neutralized locally

Model relevance - empirical distribution of residuals

\Rightarrow modeling correlations of the nuisance is critical!

Unsupervised & optimal setting of the algorithm

Optimizing a quantitative criterion

$$\mathscr{R}(\boldsymbol{x},\boldsymbol{\mu}) = \boldsymbol{\mu}_{\ell_1} \sum_{n=1}^{N'} \sum_{\ell=1}^{L} |\boldsymbol{x}_{n,\ell}| + \boldsymbol{\mu}_{\text{smooth}} \sqrt{\frac{1}{L} \sum_{\ell=1}^{L} \|\nabla_n \boldsymbol{x}_{\cdot,\ell}\|_2^2 + \tau^2}$$

 $\Rightarrow \text{ Minimizing e.g. SURE (unbiased MSE estimator):}$ $\mathsf{SURE}(\boldsymbol{\mu}) = \sum_{n,t} ||\boldsymbol{r}_{n,t} - \widehat{\boldsymbol{m}}_n - [\mathbf{A} \, \boldsymbol{x}_{\boldsymbol{\mu}}(r)]_{n,t}||_{\widehat{\boldsymbol{\sigma}}_{n,t}^{-2} \widehat{\mathbf{C}}_n^{-1}}^2 + 2\operatorname{tr}\left(\mathbf{A} \, \mathbf{J}_{\mathbf{v}_{\boldsymbol{\mu}}}(r)\right) - NL$ by accounting for the local statistics $\boldsymbol{\Omega}$ of \boldsymbol{f} .

Example on VLT/SPHERE-IRDIS data (star HR 4786):

Results – SPHERE-IFS data with synthetic disks

Unmixing point-like sources and extended features

Learning pipeline

Tasks: supervised pixel-wise classification, supervised regression.

Detection loss: similarity metric for very unbalanced classes.

$$\mathscr{L}\left(\boldsymbol{y}^{[s]}, \hat{\boldsymbol{y}}^{[s]}\right) = 1 - \underbrace{\sum_{m=1}^{M} \boldsymbol{y}_{m}^{[s]} \, \hat{\boldsymbol{y}}_{m}^{[s]} + \epsilon}_{\text{source error}} - \underbrace{\frac{\sum_{m=1}^{M} (1 - \boldsymbol{y}_{m}^{[s]})(1 - \hat{\boldsymbol{y}}_{m}^{[s]} + \epsilon)}{\sum_{m=1}^{M} 2 - \boldsymbol{y}_{m}^{[s]} - \hat{\boldsymbol{y}}_{m}^{[s]} + \epsilon}}_{\text{background error}}$$

 \Rightarrow Dedicated data-augmentation + whitening + loss: deep model specialized for each datacube without overfitting

Results: an example of detection maps

VLT/SPHERE-IRDIS data (HD 95086)

Generative approach via diffusion model

Results:

examples of training speckles examples of generated speckles

 \Rightarrow Realistic generated speckles but limited detection sensitivity

Model ablation: importance of statistical model

ROCs: mean results on VLT/SPHERE-IRDIS data

Fusing multiple observations

